» Articles » PMID: 26694030

Haem-activated Promiscuous Targeting of Artemisinin in Plasmodium Falciparum

Abstract

The mechanism of action of artemisinin and its derivatives, the most potent of the anti-malarial drugs, is not completely understood. Here we present an unbiased chemical proteomics analysis to directly explore this mechanism in Plasmodium falciparum. We use an alkyne-tagged artemisinin analogue coupled with biotin to identify 124 artemisinin covalent binding protein targets, many of which are involved in the essential biological processes of the parasite. Such a broad targeting spectrum disrupts the biochemical landscape of the parasite and causes its death. Furthermore, using alkyne-tagged artemisinin coupled with a fluorescent dye to monitor protein binding, we show that haem, rather than free ferrous iron, is predominantly responsible for artemisinin activation. The haem derives primarily from the parasite's haem biosynthesis pathway at the early ring stage and from haemoglobin digestion at the latter stages. Our results support a unifying model to explain the action and specificity of artemisinin in parasite killing.

Citing Articles

Gefitinib as an antimalarial: unveiling its therapeutic potential.

Gorki V, Walter N, Chauhan M, Dhingra N, Bagai U, Kaur S Inflammopharmacology. 2025; .

PMID: 40019687 DOI: 10.1007/s10787-025-01682-5.


The spatiotemporal transcriptional profiling of murine brain during cerebral malaria progression and after artemisinin treatment.

Chen J, Bai Y, He X, Xiao W, Chen L, Wong Y Nat Commun. 2025; 16(1):1540.

PMID: 39934099 PMC: 11814382. DOI: 10.1038/s41467-024-52223-7.


Chemo-proteomics reveals dihydrocaffeic acid exhibits anti-inflammation effects via Transaldolase 1 mediated PERK-NF-κB pathway.

Li G, Li H, Wang P, Zhang X, Kuang W, Huang L Cell Commun Signal. 2025; 23(1):65.

PMID: 39910568 PMC: 11800534. DOI: 10.1186/s12964-024-01958-3.


Activity-based chemical proteomics reveals caffeic acid ameliorates pentylenetetrazol-induced seizures by covalently targeting aconitate decarboxylase 1.

Li G, Huang L, Gu D, Wang P, Yi L, Kuang W Cell Commun Signal. 2025; 23(1):62.

PMID: 39901156 PMC: 11792687. DOI: 10.1186/s12964-024-01739-y.


A20 as a Potential Therapeutic Target for COVID-19.

Wu Y, He L, Li R, Li J, Zhao Q, Shao B Immun Inflamm Dis. 2025; 13(1):e70127.

PMID: 39853876 PMC: 11760982. DOI: 10.1002/iid3.70127.


References
1.
Ashley E, Dhorda M, Fairhurst R, Amaratunga C, Lim P, Suon S . Spread of artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2014; 371(5):411-23. PMC: 4143591. DOI: 10.1056/NEJMoa1314981. View

2.
Jortzik E, Fritz-Wolf K, Sturm N, Hipp M, Rahlfs S, Becker K . Redox regulation of Plasmodium falciparum ornithine δ-aminotransferase. J Mol Biol. 2010; 402(2):445-59. DOI: 10.1016/j.jmb.2010.07.039. View

3.
Meshnick S . Artemisinin: mechanisms of action, resistance and toxicity. Int J Parasitol. 2002; 32(13):1655-60. DOI: 10.1016/s0020-7519(02)00194-7. View

4.
Dondorp A, Nosten F, Yi P, Das D, Phyo A, Tarning J . Artemisinin resistance in Plasmodium falciparum malaria. N Engl J Med. 2009; 361(5):455-67. PMC: 3495232. DOI: 10.1056/NEJMoa0808859. View

5.
Bhisutthibhan J, Pan X, Hossler P, Walker D, Yowell C, Carlton J . The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem. 1998; 273(26):16192-8. DOI: 10.1074/jbc.273.26.16192. View