» Articles » PMID: 26674948

Intrinsic and Realized Generation Intervals in Infectious-disease Transmission

Overview
Journal Proc Biol Sci
Specialty Biology
Date 2015 Dec 18
PMID 26674948
Citations 42
Authors
Affiliations
Soon will be listed here.
Abstract

The generation interval is the interval between the time when an individual is infected by an infector and the time when this infector was infected. Its distribution underpins estimates of the reproductive number and hence informs public health strategies. Empirical generation-interval distributions are often derived from contact-tracing data. But linking observed generation intervals to the underlying generation interval required for modelling purposes is surprisingly not straightforward, and misspecifications can lead to incorrect estimates of the reproductive number, with the potential to misguide interventions to stop or slow an epidemic. Here, we clarify the theoretical framework for three conceptually different generation-interval distributions: the 'intrinsic' one typically used in mathematical models and the 'forward' and 'backward' ones typically observed from contact-tracing data, looking, respectively, forward or backward in time. We explain how the relationship between these distributions changes as an epidemic progresses and discuss how empirical generation-interval data can be used to correctly inform mathematical models.

Citing Articles

ern: An [Formula: see text] package to estimate the effective reproduction number using clinical and wastewater surveillance data.

Champredon D, Papst I, Yusuf W PLoS One. 2024; 19(6):e0305550.

PMID: 38905266 PMC: 11192340. DOI: 10.1371/journal.pone.0305550.


Generative Bayesian modeling to nowcast the effective reproduction number from line list data with missing symptom onset dates.

Lison A, Abbott S, Huisman J, Stadler T PLoS Comput Biol. 2024; 20(4):e1012021.

PMID: 38626217 PMC: 11051644. DOI: 10.1371/journal.pcbi.1012021.


Incorporating testing volume into estimation of effective reproduction number dynamics.

Goldstein I, Wakefield J, Minin V J R Stat Soc Ser A Stat Soc. 2024; 187(2):436-453.

PMID: 38617598 PMC: 11009926. DOI: 10.1093/jrsssa/qnad128.


Weekly Forecasting of Yellow Fever Occurrence and Incidence via Eco-Meteorological Dynamics.

Servadio J, Convertino M, Fiecas M, Munoz-Zanzi C Geohealth. 2023; 7(10):e2023GH000870.

PMID: 37885914 PMC: 10599710. DOI: 10.1029/2023GH000870.


Assessing changes in incubation period, serial interval, and generation time of SARS-CoV-2 variants of concern: a systematic review and meta-analysis.

Xu X, Wu Y, Kummer A, Zhao Y, Hu Z, Wang Y BMC Med. 2023; 21(1):374.

PMID: 37775772 PMC: 10541713. DOI: 10.1186/s12916-023-03070-8.


References
1.
Lloyd-Smith J, Schreiber S, Kopp P, Getz W . Superspreading and the effect of individual variation on disease emergence. Nature. 2005; 438(7066):355-9. PMC: 7094981. DOI: 10.1038/nature04153. View

2.
Cauchemez S, Boelle P, Thomas G, Valleron A . Estimating in real time the efficacy of measures to control emerging communicable diseases. Am J Epidemiol. 2006; 164(6):591-7. DOI: 10.1093/aje/kwj274. View

3.
Wallinga J, Lipsitch M . How generation intervals shape the relationship between growth rates and reproductive numbers. Proc Biol Sci. 2007; 274(1609):599-604. PMC: 1766383. DOI: 10.1098/rspb.2006.3754. View

4.
Svensson A . A note on generation times in epidemic models. Math Biosci. 2006; 208(1):300-11. DOI: 10.1016/j.mbs.2006.10.010. View

5.
Kenah E, Lipsitch M, Robins J . Generation interval contraction and epidemic data analysis. Math Biosci. 2008; 213(1):71-9. PMC: 2365921. DOI: 10.1016/j.mbs.2008.02.007. View