Cells Activated for Wound Repair Have the Potential to Direct Collective Invasion of an Epithelium
Overview
Molecular Biology
Affiliations
Mechanisms regulating how groups of cells are signaled to move collectively from their original site and invade surrounding matrix are poorly understood. Here we develop a clinically relevant ex vivo injury invasion model to determine whether cells involved in directing wound healing have invasive function and whether they can act as leader cells to direct movement of a wounded epithelium through a three-dimensional (3D) extracellular matrix (ECM) environment. Similar to cancer invasion, we found that the injured cells invade into the ECM as cords, involving heterotypical cell-cell interactions. Mesenchymal cells with properties of activated repair cells that typically locate to a wound edge are present in leader positions at the front of ZO-1-rich invading cords of cells, where they extend vimentin intermediate filament-enriched protrusions into the 3D ECM. Injury-induced invasion depends on both vimentin cytoskeletal function and MMP-2/9 matrix remodeling, because inhibiting either of these suppressed invasion. Potential push and pull forces at the tips of the invading cords were revealed by time-lapse imaging, which showed cells actively extending and retracting protrusions into the ECM. This 3D injury invasion model can be used to investigate mechanisms of leader cell-directed invasion and understand how mechanisms of wound healing are hijacked to cause disease.
Petrova I, Chebanova S, Khatsko S, Kalinina T, Zaitsev D, Glukhareva T Res Pharm Sci. 2024; 19(3):267-275.
PMID: 39035820 PMC: 11257193. DOI: 10.4103/RPS.RPS_74_23.
Immune Responses Induced at One Hour Post Cataract Surgery Wounding of the Chick Lens.
DeDreu J, Basta M, Walker J, Menko A Biomolecules. 2023; 13(11).
PMID: 38002297 PMC: 10668984. DOI: 10.3390/biom13111615.
Basta M, Petruk S, Summer R, Rosenbloom J, Wermuth P, Macarak E iScience. 2023; 26(5):106570.
PMID: 37250334 PMC: 10214303. DOI: 10.1016/j.isci.2023.106570.
The Pro-Fibrotic Response to Lens Injury Is Signaled in a PI3K Isoform-Specific Manner.
Menko A, Walker J Biomolecules. 2022; 12(9).
PMID: 36139020 PMC: 9496593. DOI: 10.3390/biom12091181.
Menko A, Romisher A, Walker J Front Cell Dev Biol. 2022; 10:862423.
PMID: 35386200 PMC: 8977891. DOI: 10.3389/fcell.2022.862423.