» Articles » PMID: 26655273

MicroRNA-122 Confers Sorafenib Resistance to Hepatocellular Carcinoma Cells by Targeting IGF-1R to Regulate RAS/RAF/ERK Signaling Pathways

Overview
Journal Cancer Lett
Specialty Oncology
Date 2015 Dec 15
PMID 26655273
Citations 90
Authors
Affiliations
Soon will be listed here.
Abstract

Sorafenib is the first-line treatment for advanced hepatocellular carcinoma (HCC), but the clinical response to sorafenib is seriously limited by drug resistance. In this study, we investigated the molecular mechanisms of sorafenib resistance in HCC cells. Our miRNA microarray data indicate that liver-specific miR-122 expression was significantly reduced in sorafenib-resistant cells. Overexpression of miR-122 made drug-tolerant cells sensitive to sorafenib and induced apoptosis. Insulin-like growth factor 1 receptor (IGF-1R) was validated as a target of miR-122 and was repressed by this miRNA. miR-122-induced apoptosis was repressed by the IGF-1R activator IGFI or IGFII. Conversely, the IGF-1R inhibitor PPP or NVP-AEW541 in combination with sorafenib significantly induced cell apoptosis and disrupted tolerance to drugs in vitro. These results indicated that activation of IGF-1R by ectopic down-regulation of miR-122 counteracted the effects of sorafenib-induced apoptosis, thus conferring sorafenib resistance. Further study revealed that activation of IGF-1R by miR-122 down-regulation contributed to activation of RAS/RAF/ERK signaling, which was associated with drug resistance. Our data imply that an intimate correlation between miR-122 and IGF-1R abnormal expression is a critical determinant of sorafenib tolerance.

Citing Articles

Emerging role of exosomes in cancer therapy: progress and challenges.

Li J, Wang J, Chen Z Mol Cancer. 2025; 24(1):13.

PMID: 39806451 PMC: 11727182. DOI: 10.1186/s12943-024-02215-4.


Resistance to Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma (HCC): Clinical Implications and Potential Strategies to Overcome the Resistance.

Gawi Ermi A, Sarkar D Cancers (Basel). 2024; 16(23).

PMID: 39682130 PMC: 11640171. DOI: 10.3390/cancers16233944.


HDAC-driven mechanisms in anticancer resistance: epigenetics and beyond.

Minisini M, Mascaro M, Brancolini C Cancer Drug Resist. 2024; 7:46.

PMID: 39624079 PMC: 11609180. DOI: 10.20517/cdr.2024.103.


EGFR bypass activation mediates acquired resistance to regorafenib in hepatocellular carcinoma.

Hu L, Shi W, Liu K, Ma D, Xin Q, Wang Z Front Med (Lausanne). 2024; 11:1464610.

PMID: 39606630 PMC: 11598357. DOI: 10.3389/fmed.2024.1464610.


MicroRNAs in Hepatocellular Carcinoma Pathogenesis: Insights into Mechanisms and Therapeutic Opportunities.

Mahboobnia K, Beveridge D, Yeoh G, Kabir T, Leedman P Int J Mol Sci. 2024; 25(17).

PMID: 39273339 PMC: 11395074. DOI: 10.3390/ijms25179393.