» Articles » PMID: 26629970

The Infrapatellar Fat Pad from Diseased Joints Inhibits Chondrogenesis of Mesenchymal Stem Cells

Overview
Journal Eur Cell Mater
Date 2015 Dec 3
PMID 26629970
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

Cartilage repair by bone marrow derived mesenchymal stem cells (MSCs) can be influenced by inflammation in the knee. Next to synovium, the infrapatellar fat pad (IPFP) has been described as a source for inflammatory factors. Here, we investigated whether factors secreted by the IPFP affect chondrogenesis of MSCs and whether this is influenced by different joint pathologies or obesity. Furthermore, we examined the role of IPFP resident macrophages. First, we made conditioned medium from IPFP obtained from osteoarthritic joints, IPFP from traumatically injured joints during anterior cruciate ligament reconstruction, and subcutaneous adipose tissue. Additionally, we made conditioned medium of macrophages isolated from osteoarthritic IPFP and of polarised monocytes from peripheral blood. We evaluated the effect of different types of conditioned medium on MSC chondrogenesis. Conditioned medium from IPFP decreased collagen 2 and aggrecan gene expression as well as thionin and collagen type 2 staining. This anti-chondrogenic effect was the same for conditioned medium from IPFP of osteoarthritic and traumatically injured joints. Furthermore, IPFP from obese (Body Mass Index >30) donors did not inhibit chondrogenesis more than that of lean (Body Mass Index <25) donors. Finally, conditioned medium from macrophages isolated from IPFP decreased the expression of hyaline cartilage genes, as did peripheral blood monocytes stimulated with pro-inflammatory cytokines. The IPFP and the resident pro-inflammatory macrophages could therefore be targets for therapies to improve MSC-based cartilage repair.

Citing Articles

Infrapatellar Fat Pad-Derived Non-Cellular Products in Therapy for Musculoskeletal Diseases: A Scoping Review.

Triangga A, Asmara W, Magetsari R, Bachtiar I, Fazatamma D, Saraswati P Orthop Rev (Pavia). 2024; 16:125841.

PMID: 39686964 PMC: 11646799. DOI: 10.52965/001c.125841.


Infrapatellar fat pad adipose tissue-derived macrophages display a predominant CD11c+CD206+ phenotype and express genotypes attributable to key features of OA pathogenesis.

Hengtrakool P, Leearamwat N, Sengprasert P, Wongphoom J, Chaichana T, Taweevisit M Front Immunol. 2024; 15:1326953.

PMID: 38361943 PMC: 10867170. DOI: 10.3389/fimmu.2024.1326953.


Emerging Roles of Macrophage Polarization in Osteoarthritis: Mechanisms and Therapeutic Strategies.

Yuan Z, Jiang D, Yang M, Tao J, Hu X, Yang X Orthop Surg. 2024; 16(3):532-550.

PMID: 38296798 PMC: 10925521. DOI: 10.1111/os.13993.


The synovial fluid from patients with focal cartilage defects contains mesenchymal stem/stromal cells and macrophages with pro- and anti-inflammatory phenotypes.

Garcia J, Hulme C, Mennan C, Roberts S, Bastiaansen-Jenniskens Y, van Osch G Osteoarthr Cartil Open. 2022; 2(2):100039.

PMID: 36474589 PMC: 9718259. DOI: 10.1016/j.ocarto.2020.100039.


Intra-articular Administration of Triamcinolone Acetonide in a Murine Cartilage Defect Model Reduces Inflammation but Inhibits Endogenous Cartilage Repair.

Wesdorp M, Capar S, Bastiaansen-Jenniskens Y, Kops N, Creemers L, Verhaar J Am J Sports Med. 2022; 50(6):1668-1678.

PMID: 35315287 PMC: 9069659. DOI: 10.1177/03635465221083693.