» Articles » PMID: 26628083

Methods on Skull Stripping of MRI Head Scan Images-a Review

Overview
Journal J Digit Imaging
Publisher Springer
Date 2015 Dec 3
PMID 26628083
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

The high resolution magnetic resonance (MR) brain images contain some non-brain tissues such as skin, fat, muscle, neck, and eye balls compared to the functional images namely positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI) which usually contain relatively less non-brain tissues. The presence of these non-brain tissues is considered as a major obstacle for automatic brain image segmentation and analysis techniques. Therefore, quantitative morphometric studies of MR brain images often require a preliminary processing to isolate the brain from extra-cranial or non-brain tissues, commonly referred to as skull stripping. This paper describes the available methods on skull stripping and an exploratory review of recent literature on the existing skull stripping methods.

Citing Articles

Stacked CNN-based multichannel attention networks for Alzheimer disease detection.

Hassan N, Miah A, Suzuki K, Okuyama Y, Shin J Sci Rep. 2025; 15(1):5815.

PMID: 39962097 PMC: 11832778. DOI: 10.1038/s41598-025-85703-x.


Automated pediatric brain tumor imaging assessment tool from CBTN: Enhancing suprasellar region inclusion and managing limited data with deep learning.

Gandhi D, Khalili N, Familiar A, Gottipati A, Khalili N, Tu W Neurooncol Adv. 2024; 6(1):vdae190.

PMID: 39717438 PMC: 11664259. DOI: 10.1093/noajnl/vdae190.


An intelligent magnetic resonance imagining-based multistage Alzheimer's disease classification using swish-convolutional neural networks.

B A, Kalirajan K Med Biol Eng Comput. 2024; 63(3):885-899.

PMID: 39546213 DOI: 10.1007/s11517-024-03237-2.


Novel hippocampus-centered methodology for informative instance selection in Alzheimer's disease data.

Castro-Silva J, Moreno-Garcia M, Guachi-Guachi L, Peluffo-Ordonez D Heliyon. 2024; 10(19):e37552.

PMID: 39381107 PMC: 11456841. DOI: 10.1016/j.heliyon.2024.e37552.


Automated ASPECTS Segmentation and Scoring Tool: a Method Tailored for a Colombian Telestroke Network.

Ortiz E, Rivera J, Granja M, Agudelo N, Hernandez Hoyos M, Salazar A J Imaging Inform Med. 2024; .

PMID: 39284983 DOI: 10.1007/s10278-024-01258-9.


References
1.
Yoon U, Kim J, Kim I, Kim S . Adaptable fuzzy C-Means for improved classification as a preprocessing procedure of brain parcellation. J Digit Imaging. 2001; 14(2 Suppl 1):238-40. PMC: 3452731. DOI: 10.1007/BF03190353. View

2.
Atkins M, Mackiewich B . Fully automatic segmentation of the brain in MRI. IEEE Trans Med Imaging. 1998; 17(1):98-107. DOI: 10.1109/42.668699. View

3.
Smith S . Fast robust automated brain extraction. Hum Brain Mapp. 2002; 17(3):143-55. PMC: 6871816. DOI: 10.1002/hbm.10062. View

4.
Hizukuri A, Nakayama R, Nakako N, Kawanaka H, Takase H, Yamamoto K . Computerized segmentation method for individual calcifications within clustered microcalcifications while maintaining their shapes on magnification mammograms. J Digit Imaging. 2011; 25(3):377-86. PMC: 3348978. DOI: 10.1007/s10278-011-9420-z. View

5.
Grau V, Mewes A, Alcaniz M, Kikinis R, Warfield S . Improved watershed transform for medical image segmentation using prior information. IEEE Trans Med Imaging. 2004; 23(4):447-58. DOI: 10.1109/TMI.2004.824224. View