Ultrafast Solvent-Assisted Sodium Ion Intercalation into Highly Crystalline Few-Layered Graphene
Overview
Affiliations
A maximum sodium capacity of ∼35 mAh/g has hampered the use of crystalline carbon nanostructures for sodium ion battery anodes. We demonstrate that a diglyme solvent shell encapsulating a sodium ion acts as a "nonstick" coating to facilitate rapid ion insertion into crystalline few-layer graphene and bypass slow desolvation kinetics. This yields storage capacities above 150 mAh/g, cycling performance with negligible capacity fade over 8000 cycles, and ∼100 mAh/g capacities maintained at currents of 30 A/g (∼12 s charge). Raman spectroscopy elucidates the ordered, but nondestructive cointercalation mechanism that differs from desolvated ion intercalation processes. In situ Raman measurements identify the Na(+) staging sequence and isolates Fermi energies for the first and second stage ternary intercalation compounds at ∼0.8 eV and ∼1.2 eV.
Research progress of organic liquid electrolyte for sodium ion battery.
Zhang J, Li J, Wang H, Wang M Front Chem. 2023; 11:1253959.
PMID: 37780988 PMC: 10536326. DOI: 10.3389/fchem.2023.1253959.
SnS/C nanocomposites for high-performance sodium ion battery anodes.
Yu S, Jin A, Huang X, Yang Y, Huang R, Brock J RSC Adv. 2022; 8(42):23847-23853.
PMID: 35540304 PMC: 9081785. DOI: 10.1039/c8ra04421j.
Mahmoodi H, Fattahi M, Motevassel M RSC Adv. 2022; 11(57):36289-36304.
PMID: 35492754 PMC: 9043336. DOI: 10.1039/d1ra06069d.
Li L, Hu Z, Zhao S, Chou S Chem Sci. 2022; 12(46):15206-15218.
PMID: 34976341 PMC: 8635201. DOI: 10.1039/d1sc04202e.
New Diglyme-based Gel Polymer Electrolytes for Na-based Energy Storage Devices.
Babu B, Enke M, Prykhodska S, Lex-Balducci A, Schubert U, Balducci A ChemSusChem. 2021; 14(21):4836-4845.
PMID: 34473902 PMC: 8597054. DOI: 10.1002/cssc.202101445.