» Articles » PMID: 26617270

Resonances of Nanoparticles with Poor Plasmonic Metal Tips

Overview
Journal Sci Rep
Specialty Science
Date 2015 Dec 1
PMID 26617270
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

The catalytic and optical properties of metal nanoparticles can be combined to create platforms for light-driven chemical energy storage and enhanced in-situ reaction monitoring. However, the heavily damped plasmon resonances of many catalytically active metals (e.g. Pt, Pd) prevent this dual functionality in pure nanostructures. The addition of catalytic metals at the surface of efficient plasmonic particles thus presents a unique opportunity if the resonances can be conserved after coating. Here, nanometer resolution electron-based techniques (electron energy loss, cathodoluminescence, and energy dispersive X-ray spectroscopy) are used to show that Au particles incorporating a catalytically active but heavily damped metal, Pd, sustain multiple size-dependent localized surface plasmon resonances (LSPRs) that are narrow and strongly localized at the Pd-rich tips. The resonances also couple with a dielectric substrate and other nanoparticles, establishing that the full range of plasmonic behavior is observed in these multifunctional nanostructures despite the presence of Pd.

Citing Articles

Spatio-spectral metrics in electron energy loss spectroscopy as a tool to resolve nearly degenerate plasmon modes in dimer plasmonic antennas.

Horak M, Konecna A, Sikola T, Krapek V Nanophotonics. 2024; 12(15):3089-3098.

PMID: 39635045 PMC: 11501496. DOI: 10.1515/nanoph-2023-0153.


Bimetallic copper palladium nanorods: plasmonic properties and palladium content effects.

Ten A, West C, Jeong S, Hopper E, Wang Y, Zhu B Nanoscale Adv. 2023; 5(23):6524-6532.

PMID: 38024297 PMC: 10662198. DOI: 10.1039/d3na00523b.


Practical Considerations for Simulating the Plasmonic Properties of Metal Nanoparticles.

Googasian J, Skrabalak S ACS Phys Chem Au. 2023; 3(3):252-262.

PMID: 37249938 PMC: 10214510. DOI: 10.1021/acsphyschemau.2c00064.


Photothermal Nanomaterials: A Powerful Light-to-Heat Converter.

Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R Chem Rev. 2023; 123(11):6891-6952.

PMID: 37133878 PMC: 10273250. DOI: 10.1021/acs.chemrev.3c00159.


Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles.

Ringe E J Phys Chem C Nanomater Interfaces. 2020; 124(29):15665-15679.

PMID: 32905178 PMC: 7467285. DOI: 10.1021/acs.jpcc.0c03871.


References
1.
Chen J, Wiley B, McLellan J, Xiong Y, Li Z, Xia Y . Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 2005; 5(10):2058-62. DOI: 10.1021/nl051652u. View

2.
Bigelow N, Vaschillo A, Iberi V, Camden J, Masiello D . Characterization of the electron- and photon-driven plasmonic excitations of metal nanorods. ACS Nano. 2012; 6(8):7497-504. DOI: 10.1021/nn302980u. View

3.
Rossouw D, Botton G . Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys Rev Lett. 2013; 110(6):066801. DOI: 10.1103/PhysRevLett.110.066801. View

4.
Nicoletti O, de la Pena F, Leary R, Holland D, Ducati C, Midgley P . Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature. 2013; 502(7469):80-4. DOI: 10.1038/nature12469. View

5.
Doane T, Burda C . The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chem Soc Rev. 2012; 41(7):2885-911. DOI: 10.1039/c2cs15260f. View