» Articles » PMID: 26613315

Acidity of the Aqueous Rutile TiO2(110) Surface from Density Functional Theory Based Molecular Dynamics

Overview
Specialties Biochemistry
Chemistry
Date 2015 Nov 28
PMID 26613315
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

The thermodynamics of protonation and deprotonation of the rutile TiO2(110) water interface is studied using a combination of density functional theory based molecular dynamics (DFTMD) and free energy perturbation methods. Acidity constants are computed from the free energy for chaperone assisted insertion/removal of protons in fully atomistic periodic model systems treating the solid and solvent at the same level of theory. The pKa values we find for the two active surface hydroxyl groups on TiO2(110), the bridge OH (Ti2OH(+)), and terminal H2O adsorbed on a 5-fold Ti site (TiOH2) are -1 and 9, leading to a point of zero proton charge of 4, well within the computational error margin (2 pKa units) from the experimental value (4.5-5.5). The computed intrinsic surface acidities have also been used to estimate the dissociation free energy of adsorbed water giving 0.6 eV, suggesting that water dissociation is unlikely on a perfect aqueous TiO2(110) surface. For further analysis, we compare to the predictions of the MUltiSIte Complexation (MUSIC) and Solvation, Bond strength, and Electrostatic (SBE) models. The conclusion regarding the MUSIC model is that, while there is good agreement for the acidity of an adsorbed water molecule, the proton affinity of the bridging oxygen obtained in the DFTMD calculation is significantly lower (more than 5 pKa units) than the MUSIC model value. Structural analysis shows that there are significant differences in hydrogen bonding, in particular to a bridging oxygen which is assumed to be stronger in the MUSIC model compared to what we find using DFTMD. Using DFTMD coordination numbers as input for the MUSIC model, however, led to a pKa prediction which is inconsistent with the estimates obtained from the DFTMD free energy calculation.

Citing Articles

Water-Mediated Proton Hopping Mechanisms at the SnO(110)/HO Interface from Ab Initio Deep Potential Molecular Dynamics.

Jia M, Zhuang Y, Wang F, Zhang C, Cheng J Precis Chem. 2024; 2(12):644-654.

PMID: 39734759 PMC: 11672534. DOI: 10.1021/prechem.4c00056.


Zinc-indium-sulfide favors efficient C - H bond activation by concerted proton-coupled electron transfer.

Wu X, Fan X, Xie S, Scodeller I, Wen X, Vangestel D Nat Commun. 2024; 15(1):4967.

PMID: 38862582 PMC: 11167015. DOI: 10.1038/s41467-024-49265-2.


Correlated electron-nuclear dynamics of photoinduced water dissociation on rutile TiO.

You P, Chen D, Liu X, Zhang C, Selloni A, Meng S Nat Mater. 2024; 23(8):1100-1106.

PMID: 38777872 DOI: 10.1038/s41563-024-01900-5.


Nonequilibrium Molecular Dynamics Simulation of Water Splitting at FeO-Hematite/Water Interfaces in an External Electric Field.

Ajide M, English N J Phys Chem C Nanomater Interfaces. 2023; 127(50):24088-24105.

PMID: 38148852 PMC: 10749450. DOI: 10.1021/acs.jpcc.3c05119.


The Metal-Oxide Nanoparticle-Aqueous Solution Interface Studied by Liquid-Microjet Photoemission.

Ali H, Winter B, Seidel R Acc Chem Res. 2023; 56(13):1687-1697.

PMID: 37310757 PMC: 10324314. DOI: 10.1021/acs.accounts.2c00789.