» Articles » PMID: 26610551

Recent Advances in BLV Research

Abstract

Different animal models have been proposed to investigate the mechanisms of Human T-lymphotropic Virus (HTLV)-induced pathogenesis: rats, transgenic and NOD-SCID/γcnull (NOG) mice, rabbits, squirrel monkeys, baboons and macaques. These systems indeed provide useful information but have intrinsic limitations such as lack of disease relevance, species specificity or inadequate immune response. Another strategy based on a comparative virology approach is to characterize a related pathogen and to speculate on possible shared mechanisms. In this perspective, bovine leukemia virus (BLV), another member of the deltaretrovirus genus, is evolutionary related to HTLV-1. BLV induces lymphoproliferative disorders in ruminants providing useful information on the mechanisms of viral persistence, genetic determinants of pathogenesis and potential novel therapies.

Citing Articles

Investigating BoLA Class II DRB3*009:02 carrying cattle in Japan.

Fujimori S, Ando T, Sekiguchi S, Notsu K, Ishida S, Daidoji T Vet Anim Sci. 2025; 27:100425.

PMID: 39867943 PMC: 11762616. DOI: 10.1016/j.vas.2025.100425.


CRISPR-Cas13a-Based Lateral Flow Assay for Detection of Bovine Leukemia Virus.

Zhao Y, Dai J, Zhang Z, Chen J, Chen Y, Hu C Animals (Basel). 2024; 14(22).

PMID: 39595314 PMC: 11590953. DOI: 10.3390/ani14223262.


A rapid and simple clonality assay for bovine leukemia virus-infected cells by amplified fragment length polymorphism (AFLP) analysis.

Kobayashi T, Makimoto S, Ohnuki N, Hossain M, Jahan M, Matsuo M Microbiol Spectr. 2024; 13(1):e0171424.

PMID: 39570050 PMC: 11705797. DOI: 10.1128/spectrum.01714-24.


Molecular frequency of bovine leukemia virus in Creole cattle of Eastern Colombia.

Jaimes-Duenez J, Goyeneche-Ortiz E, Tique-Oviedo M, Ortiz-Pineda M, Cardenas-Pinto L, Jimenez-Leano A Vet Anim Sci. 2024; 25:100372.

PMID: 39022766 PMC: 11253674. DOI: 10.1016/j.vas.2024.100372.


Diagnosis and phylogenetic analysis of bovine leukemia virus in dairy cattle in northeastern Brazil.

Gomes Pereira J, Silva C, Silva L, Lima C, do Rosario C, Silva E Front Vet Sci. 2023; 9:1080994.

PMID: 36713884 PMC: 9880491. DOI: 10.3389/fvets.2022.1080994.


References
1.
Meas S, Ohashi K, Tum S, Chhin M, Te K, Miura K . Seroprevalence of bovine immunodeficiency virus and bovine leukemia virus in draught animals in Cambodia. J Vet Med Sci. 2000; 62(7):779-81. DOI: 10.1292/jvms.62.779. View

2.
Gutierrez G, Rodriguez S, de Brogniez A, Gillet N, Golime R, Burny A . Vaccination against δ-retroviruses: the bovine leukemia virus paradigm. Viruses. 2014; 6(6):2416-27. PMC: 4074934. DOI: 10.3390/v6062416. View

3.
Merezak C, Pierreux C, Adam E, Lemaigre F, Rousseau G, Calomme C . Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency. J Virol. 2001; 75(15):6977-88. PMC: 114426. DOI: 10.1128/JVI.75.15.6977-6988.2001. View

4.
Lefebvre L, Vanderplasschen A, Ciminale V, Heremans H, Dangoisse O, Jauniaux J . Oncoviral bovine leukemia virus G4 and human T-cell leukemia virus type 1 p13(II) accessory proteins interact with farnesyl pyrophosphate synthetase. J Virol. 2002; 76(3):1400-14. PMC: 135811. DOI: 10.1128/jvi.76.3.1400-1414.2002. View

5.
Debacq C, Asquith B, Kerkhofs P, Portetelle D, Burny A, Kettmann R . Increased cell proliferation, but not reduced cell death, induces lymphocytosis in bovine leukemia virus-infected sheep. Proc Natl Acad Sci U S A. 2002; 99(15):10048-53. PMC: 126622. DOI: 10.1073/pnas.142100999. View