» Articles » PMID: 26600989

Design and Performance of an Ultra-flexible Two-photon Microscope for in Vivo Research

Abstract

We present a cost-effective in vivo two-photon microscope with a highly flexible frontend for in vivo research. Our design ensures fast and reproducible access to the area of interest, including rotation of imaging plane, and maximizes space for auxiliary experimental equipment in the vicinity of the animal. Mechanical flexibility is achieved with large motorized linear stages that move the objective in the X, Y, and Z directions up to 130 mm. 360° rotation of the frontend (rotational freedom for one axis) is achieved with the combination of a motorized high precision bearing and gearing. Additionally, the modular design of the frontend, based on commercially available optomechanical parts, allows straightforward updates to future scanning technologies. The design exceeds the mobility of previous movable microscope designs while maintaining high optical performance.

Citing Articles

TWINKLE: An open-source two-photon microscope for teaching and research.

Schottdorf M, Rich P, Diamanti E, Lin A, Tafazoli S, Nieh E PLoS One. 2025; 20(2):e0318924.

PMID: 39946384 PMC: 11824991. DOI: 10.1371/journal.pone.0318924.


TWINKLE: An open-source two-photon microscope for teaching and research.

Schottdorf M, Rich P, Diamanti E, Lin A, Tafazoli S, Nieh E bioRxiv. 2024; .

PMID: 39386506 PMC: 11463478. DOI: 10.1101/2024.09.23.612766.


Pia-FLOW: Deciphering hemodynamic maps of the pial vascular connectome and its response to arterial occlusion.

Gluck C, Zhou Q, Droux J, Chen Z, Glandorf L, Wegener S Proc Natl Acad Sci U S A. 2024; 121(28):e2402624121.

PMID: 38954543 PMC: 11252916. DOI: 10.1073/pnas.2402624121.


Cortex-wide transcranial localization microscopy with fluorescently labeled red blood cells.

Zhou Q, Gluck C, Tang L, Glandorf L, Droux J, El Amki M Nat Commun. 2024; 15(1):3526.

PMID: 38664419 PMC: 11045747. DOI: 10.1038/s41467-024-47892-3.


Standardised Measurements for Monitoring and Comparing Multiphoton Microscope Systems.

Lees R, Bianco I, Campbell R, Orlova N, Peterka D, Pichler B bioRxiv. 2024; .

PMID: 38328224 PMC: 10849699. DOI: 10.1101/2024.01.23.576417.


References
1.
Dombeck D, Khabbaz A, Collman F, Adelman T, Tank D . Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron. 2007; 56(1):43-57. PMC: 2268027. DOI: 10.1016/j.neuron.2007.08.003. View

2.
Helmchen F, Denk W . Deep tissue two-photon microscopy. Nat Methods. 2005; 2(12):932-40. DOI: 10.1038/nmeth818. View

3.
Denk W, Strickler J, Webb W . Two-photon laser scanning fluorescence microscopy. Science. 1990; 248(4951):73-6. DOI: 10.1126/science.2321027. View

4.
Hall A, Molitoris B . Dynamic multiphoton microscopy: focusing light on acute kidney injury. Physiology (Bethesda). 2014; 29(5):334-42. PMC: 4214830. DOI: 10.1152/physiol.00010.2014. View

5.
Stettler D, Yamahachi H, Li W, Denk W, Gilbert C . Axons and synaptic boutons are highly dynamic in adult visual cortex. Neuron. 2006; 49(6):877-87. DOI: 10.1016/j.neuron.2006.02.018. View