» Articles » PMID: 26581305

Dopamine, Reward Learning, and Active Inference

Overview
Specialty Biology
Date 2015 Nov 20
PMID 26581305
Citations 46
Authors
Affiliations
Soon will be listed here.
Abstract

Temporal difference learning models propose phasic dopamine signaling encodes reward prediction errors that drive learning. This is supported by studies where optogenetic stimulation of dopamine neurons can stand in lieu of actual reward. Nevertheless, a large body of data also shows that dopamine is not necessary for learning, and that dopamine depletion primarily affects task performance. We offer a resolution to this paradox based on an hypothesis that dopamine encodes the precision of beliefs about alternative actions, and thus controls the outcome-sensitivity of behavior. We extend an active inference scheme for solving Markov decision processes to include learning, and show that simulated dopamine dynamics strongly resemble those actually observed during instrumental conditioning. Furthermore, simulated dopamine depletion impairs performance but spares learning, while simulated excitation of dopamine neurons drives reward learning, through aberrant inference about outcome states. Our formal approach provides a novel and parsimonious reconciliation of apparently divergent experimental findings.

Citing Articles

Policy Complexity Suppresses Dopamine Responses.

Gershman S, Lak A J Neurosci. 2025; 45(9).

PMID: 39788740 PMC: 11866995. DOI: 10.1523/JNEUROSCI.1756-24.2024.


Generalized cue reactivity in rat dopamine neurons after opioids.

Lehmann C, Miller N, Nair V, Costa K, Schoenbaum G, Moussawi K Nat Commun. 2025; 16(1):321.

PMID: 39747036 PMC: 11697388. DOI: 10.1038/s41467-024-55504-3.


Policy complexity suppresses dopamine responses.

Gershman S, Lak A bioRxiv. 2024; .

PMID: 39345642 PMC: 11429712. DOI: 10.1101/2024.09.15.613150.


Dopamine-mediated formation of a memory module in the nucleus accumbens for goal-directed navigation.

Jung K, Krussel S, Yoo S, An M, Burke B, Schappaugh N Nat Neurosci. 2024; 27(11):2178-2192.

PMID: 39333785 PMC: 11537966. DOI: 10.1038/s41593-024-01770-9.


An Integrated theory of false insights and beliefs under psychedelics.

McGovern H, Grimmer H, Doss M, Hutchinson B, Timmermann C, Lyon A Commun Psychol. 2024; 2(1):69.

PMID: 39242747 PMC: 11332244. DOI: 10.1038/s44271-024-00120-6.


References
1.
Wunderlich K, Dayan P, Dolan R . Mapping value based planning and extensively trained choice in the human brain. Nat Neurosci. 2012; 15(5):786-91. PMC: 3378641. DOI: 10.1038/nn.3068. View

2.
Pouget A, Beck J, Ma W, Latham P . Probabilistic brains: knowns and unknowns. Nat Neurosci. 2013; 16(9):1170-8. PMC: 4487650. DOI: 10.1038/nn.3495. View

3.
Schultz W, Dayan P, Montague P . A neural substrate of prediction and reward. Science. 1997; 275(5306):1593-9. DOI: 10.1126/science.275.5306.1593. View

4.
Salamone J, Correa M, Farrar A, Mingote S . Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl). 2007; 191(3):461-82. DOI: 10.1007/s00213-006-0668-9. View

5.
Clark A . Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav Brain Sci. 2013; 36(3):181-204. DOI: 10.1017/S0140525X12000477. View