» Articles » PMID: 26580075

Genetic Interaction of Aspergillus Nidulans GalR, XlnR and AraR in Regulating D-Galactose and L-Arabinose Release and Catabolism Gene Expression

Overview
Journal PLoS One
Date 2015 Nov 19
PMID 26580075
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

In Aspergillus nidulans, the xylanolytic regulator XlnR and the arabinanolytic regulator AraR co-regulate pentose catabolism. In nature, the pentose sugars D-xylose and L-arabinose are both main building blocks of the polysaccharide arabinoxylan. In pectin and arabinogalactan, these two monosaccharides are found in combination with D-galactose. GalR, the regulator that responds to the presence of D-galactose, regulates the D-galactose catabolic pathway. In this study we investigated the possible interaction between XlnR, AraR and GalR in pentose and/or D-galactose catabolism in A. nidulans. Growth phenotypes and metabolic gene expression profiles were studied in single, double and triple disruptant A. nidulans strains of the genes encoding these paralogous transcription factors. Our results demonstrate that AraR and XlnR not only control pentose catabolic pathway genes, but also genes of the oxido-reductive D-galactose catabolic pathway. This suggests an interaction between three transcriptional regulators in D-galactose catabolism. Conversely, GalR is not involved in regulation of pentose catabolism, but controls only genes of the oxido-reductive D-galactose catabolic pathway.

Citing Articles

Unveiling a Microexon Switch: Novel Regulation of the Activities of Sugar Assimilation and Plant-Cell-Wall-Degrading Xylanases and Cellulases by Xlr2 in .

Castaneda-Casasola C, Nieto-Jacobo M, Soares A, Padilla-Padilla E, Anducho-Reyes M, Brown C Int J Mol Sci. 2024; 25(10).

PMID: 38791210 PMC: 11121469. DOI: 10.3390/ijms25105172.


Regulation of nutrient utilization in filamentous fungi.

Kerkaert J, Huberman L Appl Microbiol Biotechnol. 2023; 107(19):5873-5898.

PMID: 37540250 PMC: 10983054. DOI: 10.1007/s00253-023-12680-4.


Homeobox transcription factor HbxA influences expression of over one thousand genes in the model fungus Aspergillus nidulans.

Pandit S, Zheng J, Yin Y, Lorber S, Puel O, Dhingra S PLoS One. 2023; 18(7):e0286271.

PMID: 37478074 PMC: 10361519. DOI: 10.1371/journal.pone.0286271.


Enzymatic Treatments for Biosolids: An Outlook and Recent Trends.

Quintero-Garcia O, Perez-Soler H, Amezcua-Allieri M Int J Environ Res Public Health. 2023; 20(6).

PMID: 36981713 PMC: 10049663. DOI: 10.3390/ijerph20064804.


The Sugar Metabolic Model of Can Only Be Reliably Transferred to Fungi of Its Phylum.

Li J, Chroumpi T, Garrigues S, Kun R, Meng J, Salazar-Cerezo S J Fungi (Basel). 2022; 8(12).

PMID: 36547648 PMC: 9781776. DOI: 10.3390/jof8121315.


References
1.
Battaglia E, Visser L, Nijssen A, van Veluw G, Wosten H, de Vries R . Analysis of regulation of pentose utilisation in Aspergillus niger reveals evolutionary adaptations in Eurotiales. Stud Mycol. 2011; 69(1):31-8. PMC: 3161754. DOI: 10.3114/sim.2011.69.03. View

2.
Richard P, Londesborough J, Putkonen M, Kalkkinen N, Penttila M . Cloning and expression of a fungal L-arabinitol 4-dehydrogenase gene. J Biol Chem. 2001; 276(44):40631-7. DOI: 10.1074/jbc.M104022200. View

3.
Crabtree J, Angiuoli S, Wortman J, White O . Sybil: methods and software for multiple genome comparison and visualization. Methods Mol Biol. 2008; 408:93-108. DOI: 10.1007/978-1-59745-547-3_6. View

4.
Roberts C . Enzyme lesions in galactose non-utilising mutants of Aspergillus nidulans. Biochim Biophys Acta. 1970; 201(2):267-83. DOI: 10.1016/0304-4165(70)90301-6. View

5.
Gruben B, Zhou M, de Vries R . GalX regulates the D-galactose oxido-reductive pathway in Aspergillus niger. FEBS Lett. 2012; 586(22):3980-5. DOI: 10.1016/j.febslet.2012.09.029. View