» Articles » PMID: 26555191

Role of Arginine and Lysine in the Antimicrobial Mechanism of Histone-derived Antimicrobial Peptides

Overview
Journal FEBS Lett
Specialty Biochemistry
Date 2015 Nov 12
PMID 26555191
Citations 69
Authors
Affiliations
Soon will be listed here.
Abstract

Translocation of cell-penetrating peptides is often promoted by increased content of arginine or other guanidinium groups. However, relatively little research has considered the role of these functional groups on antimicrobial peptide activity. This study compared the activity of three histone-derived antimicrobial peptides-buforin II, DesHDAP1, and parasin-with variants that contain only lysine or arginine cationic residues. These peptides operate via different mechanisms as parasin causes membrane permeabilization while buforin II and DesHDAP1 translocate into bacteria. For all peptides, antibacterial activity increased with increased arginine content. Higher arginine content increased permeabilization for parasin while it improved translocation for buforin II and DesHDAP1. These observations provide insight into the relative importance of arginine and lysine in these antimicrobial peptides.

Citing Articles

Exploring non-alcohol-based disinfectant: virucidal efficacy of arginine and Zinc chloride against feline calicivirus.

Kong Li Ying M, Masirevic S, Tan Y, Marzinek J, Fox S, Verma C Front Microbiol. 2025; 16:1550295.

PMID: 40018673 PMC: 11865247. DOI: 10.3389/fmicb.2025.1550295.


Phages adapt to recognize an O-antigen polysaccharide site by mutating the "backup" tail protein ORF59, enabling reinfection of phage-resistant .

Li P, Ma W, Cheng J, Zhan C, Lu H, Shen J Emerg Microbes Infect. 2025; 14(1):2455592.

PMID: 39817558 PMC: 11795761. DOI: 10.1080/22221751.2025.2455592.


Production, Delivery, and Regulatory Aspects for Application of Plant-Based Anti-microbial Peptides: a Comprehensive Review.

Nagella P, Balasubramanian B, Park S, Singh U, Jayan A, Mukherjee S Probiotics Antimicrob Proteins. 2025; .

PMID: 39753941 DOI: 10.1007/s12602-024-10421-1.


Origami of KR-12 Designed Antimicrobial Peptides and Their Potential Applications.

Lakshmaiah Narayana J, Mechesso A, Rather I, Zarena D, Luo J, Xie J Antibiotics (Basel). 2024; 13(9).

PMID: 39334990 PMC: 11429261. DOI: 10.3390/antibiotics13090816.


Development of Low-Toxicity Antimicrobial Polycarbonates Bearing Lysine Residues.

Gao R, Xue M, Shen N, Zhao X, Zhang J, Cao C Chemistry. 2024; 30(61):e202402302.

PMID: 39327935 PMC: 11537833. DOI: 10.1002/chem.202402302.


References
1.
Jenssen H, Hamill P, Hancock R . Peptide antimicrobial agents. Clin Microbiol Rev. 2006; 19(3):491-511. PMC: 1539102. DOI: 10.1128/CMR.00056-05. View

2.
Schibli D, Nguyen L, Kernaghan S, Rekdal O, Vogel H . Structure-function analysis of tritrpticin analogs: potential relationships between antimicrobial activities, model membrane interactions, and their micelle-bound NMR structures. Biophys J. 2006; 91(12):4413-26. PMC: 1779919. DOI: 10.1529/biophysj.106.085837. View

3.
Schmidt D, Jiang Q, MacKinnon R . Phospholipids and the origin of cationic gating charges in voltage sensors. Nature. 2006; 444(7120):775-9. DOI: 10.1038/nature05416. View

4.
Hancock R, Sahl H . Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 2006; 24(12):1551-7. DOI: 10.1038/nbt1267. View

5.
Ouvry-Patat S, Schey K . Characterization of antimicrobial histone sequences and posttranslational modifications by mass spectrometry. J Mass Spectrom. 2007; 42(5):664-74. DOI: 10.1002/jms.1200. View