» Articles » PMID: 26553980

Accurate Estimation of Influenza Epidemics Using Google Search Data Via ARGO

Overview
Specialty Science
Date 2015 Nov 11
PMID 26553980
Citations 140
Authors
Affiliations
Soon will be listed here.
Abstract

Accurate real-time tracking of influenza outbreaks helps public health officials make timely and meaningful decisions that could save lives. We propose an influenza tracking model, ARGO (AutoRegression with GOogle search data), that uses publicly available online search data. In addition to having a rigorous statistical foundation, ARGO outperforms all previously available Google-search-based tracking models, including the latest version of Google Flu Trends, even though it uses only low-quality search data as input from publicly available Google Trends and Google Correlate websites. ARGO not only incorporates the seasonality in influenza epidemics but also captures changes in people's online search behavior over time. ARGO is also flexible, self-correcting, robust, and scalable, making it a potentially powerful tool that can be used for real-time tracking of other social events at multiple temporal and spatial resolutions.

Citing Articles

Nowcasting reported covid-19 hospitalizations using de-identified, aggregated medical insurance claims data.

Shen X, Rumack A, Wilder B, Tibshirani R PLoS Comput Biol. 2025; 21(2):e1012717.

PMID: 39965031 PMC: 11841917. DOI: 10.1371/journal.pcbi.1012717.


Can the number of confirmed COVID-19 cases be predicted more accurately by including lifestyle data? An exploratory study for data-driven prediction of COVID-19 cases in metropolitan cities using deep learning models.

Jung S Digit Health. 2025; 11:20552076251314528.

PMID: 39872000 PMC: 11770724. DOI: 10.1177/20552076251314528.


Deep learning models for hepatitis E incidence prediction leveraging Baidu index.

Guo Y, Zhang L, Pang S, Cui X, Zhao X, Feng Y BMC Public Health. 2024; 24(1):3014.

PMID: 39478514 PMC: 11526602. DOI: 10.1186/s12889-024-20532-7.


Forecasting severe respiratory disease hospitalizations using machine learning algorithms.

Albrecht S, Broderick D, Dost K, Cheung I, Nghiem N, Wu M BMC Med Inform Decis Mak. 2024; 24(1):293.

PMID: 39379946 PMC: 11462891. DOI: 10.1186/s12911-024-02702-0.


Incorporating connectivity among Internet search data for enhanced influenza-like illness tracking.

Ning S, Hussain A, Wang Q PLoS One. 2024; 19(8):e0305579.

PMID: 39186560 PMC: 11346739. DOI: 10.1371/journal.pone.0305579.


References
1.
Santillana M, Nguyen A, Dredze M, Paul M, Nsoesie E, Brownstein J . Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance. PLoS Comput Biol. 2015; 11(10):e1004513. PMC: 4626021. DOI: 10.1371/journal.pcbi.1004513. View

2.
Yang A, Tsai S, Huang N, Peng C . Association of Internet search trends with suicide death in Taipei City, Taiwan, 2004-2009. J Affect Disord. 2011; 132(1-2):179-84. DOI: 10.1016/j.jad.2011.01.019. View

3.
Santillana M, Nsoesie E, Mekaru S, Scales D, Brownstein J . Using clinicians' search query data to monitor influenza epidemics. Clin Infect Dis. 2014; 59(10):1446-50. PMC: 4296132. DOI: 10.1093/cid/ciu647. View

4.
Ocampo A, Chunara R, Brownstein J . Using search queries for malaria surveillance, Thailand. Malar J. 2013; 12:390. PMC: 4228243. DOI: 10.1186/1475-2875-12-390. View

5.
Nsoesie E, Mararthe M, Brownstein J . Forecasting peaks of seasonal influenza epidemics. PLoS Curr. 2013; 5. PMC: 3712489. DOI: 10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc. View