» Articles » PMID: 26528264

Regulation of Fucose and 1,2-propanediol Utilization by Salmonella Enterica Serovar Typhimurium

Overview
Journal Front Microbiol
Specialty Microbiology
Date 2015 Nov 4
PMID 26528264
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

After ingestion, Salmonella enterica serovar Typhimurium (S. Typhimurium) encounters a densely populated, competitive environment in the gastrointestinal tract. To escape nutrient limitation caused by the intestinal microbiota, this pathogen has acquired specific metabolic traits to use compounds that are not metabolized by the commensal bacteria. For example, the utilization of 1,2-propanediol (1,2-PD), a product of the fermentation of L-fucose, which is present in foods of herbal origin and is also a terminal sugar of gut mucins. Under anaerobic conditions and in the presence of tetrathionate, 1,2-PD can serve as an energy source for S. Typhimurium. Comprehensive database analysis revealed that the 1,2-PD and fucose utilization operons are present in all S. enterica serovars sequenced thus far. The operon, consisting of 21 genes, is expressed as a single polycistronic mRNA. As demonstrated here, 1,2-PD was formed and further used when S. Typhimurium strain 14028 was grown with L-fucose, and the gene fucA encoding L-fuculose-1-phosphate aldolase was required for this growth. Using promoter fusions, we monitored the expression of the propanediol utilization operon that was induced at very low concentrations of 1,2-PD and was inhibited by the presence of D-glucose.

Citing Articles

Fucosylation of glycoproteins and glycolipids: opposing roles in cholera intoxication.

Ghorashi A, Boucher A, Archer-Hartmann S, Zalem D, Taherzadeh Ghahfarrokhi M, Murray N Nat Chem Biol. 2024; .

PMID: 39414978 DOI: 10.1038/s41589-024-01748-5.


A double ttrA and pduA knock-out mutant of Salmonella Typhimurium is not attenuated for mice (Mus musculus).

Ferreira V, Saraiva M, de Lima T, de Fatima Nascimento C, Paschone G, Rabelo A Braz J Microbiol. 2024; 55(4):4177-4182.

PMID: 39412602 PMC: 11711602. DOI: 10.1007/s42770-024-01533-5.


Gut microbiota carbon and sulfur metabolisms support Salmonella infections.

Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A ISME J. 2024; 18(1).

PMID: 39404095 PMC: 11482014. DOI: 10.1093/ismejo/wrae187.


Investigation of different cold adaptation abilities in Salmonella enterica serotype Typhimurium strains using extracellular metabolomic approach.

Hong H, Kim H, Kim H, Jo C Int Microbiol. 2024; 28(3):447-460.

PMID: 38977514 DOI: 10.1007/s10123-024-00556-0.


Hierarchic regulation of a metabolic pathway: H-NS, CRP, and SsrB control -inositol utilization by .

Felsl A, Brokatzky D, Kroger C, Heermann R, Fuchs T Microbiol Spectr. 2023; 12(1):e0272423.

PMID: 38095474 PMC: 10783015. DOI: 10.1128/spectrum.02724-23.


References
1.
Ochman H, Soncini F, Solomon F, Groisman E . Identification of a pathogenicity island required for Salmonella survival in host cells. Proc Natl Acad Sci U S A. 1996; 93(15):7800-4. PMC: 38828. DOI: 10.1073/pnas.93.15.7800. View

2.
Walter D, Ailion M, Roth J . Genetic characterization of the pdu operon: use of 1,2-propanediol in Salmonella typhimurium. J Bacteriol. 1997; 179(4):1013-22. PMC: 178792. DOI: 10.1128/jb.179.4.1013-1022.1997. View

3.
Tsolis R, Adams L, Ficht T, Baumler A . Contribution of Salmonella typhimurium virulence factors to diarrheal disease in calves. Infect Immun. 1999; 67(9):4879-85. PMC: 96822. DOI: 10.1128/IAI.67.9.4879-4885.1999. View

4.
Galan J, Ginocchio C . The molecular genetic bases of Salmonella entry into mammalian cells. Biochem Soc Trans. 1994; 22(2):301-6. DOI: 10.1042/bst0220301. View

5.
Srikumar S, Fuchs T . Ethanolamine utilization contributes to proliferation of Salmonella enterica serovar Typhimurium in food and in nematodes. Appl Environ Microbiol. 2010; 77(1):281-90. PMC: 3019715. DOI: 10.1128/AEM.01403-10. View