» Articles » PMID: 26512889

Filopodial Dynamics and Growth Cone Stabilization in Drosophila Visual Circuit Development

Overview
Journal Elife
Specialty Biology
Date 2015 Oct 30
PMID 26512889
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Filopodial dynamics are thought to control growth cone guidance, but the types and roles of growth cone dynamics underlying neural circuit assembly in a living brain are largely unknown. To address this issue, we have developed long-term, continuous, fast and high-resolution imaging of growth cone dynamics from axon growth to synapse formation in cultured Drosophila brains. Using R7 photoreceptor neurons as a model we show that >90% of the growth cone filopodia exhibit fast, stochastic dynamics that persist despite ongoing stepwise layer formation. Correspondingly, R7 growth cones stabilize early and change their final position by passive dislocation. N-Cadherin controls both fast filopodial dynamics and growth cone stabilization. Surprisingly, loss of N-Cadherin causes no primary targeting defects, but destabilizes R7 growth cones to jump between correct and incorrect layers. Hence, growth cone dynamics can influence wiring specificity without a direct role in target recognition and implement simple rules during circuit assembly.

Citing Articles

Cell adhesion and actin dynamics factors promote axonal extension and synapse formation in transplanted Drosophila photoreceptor cells.

Iwanaga R, Yahagi N, Hakeda-Suzuki S, Suzuki T Dev Growth Differ. 2024; 66(3):205-218.

PMID: 38403285 PMC: 11457513. DOI: 10.1111/dgd.12916.


Synaptic promiscuity in brain development.

Wolterhoff N, Hiesinger P Curr Biol. 2024; 34(3):R102-R116.

PMID: 38320473 PMC: 10849093. DOI: 10.1016/j.cub.2023.12.037.


A new view of axon growth and guidance grounded in the stochastic dynamics of actin networks.

Forghani R, Chandrasekaran A, Papoian G, Giniger E Open Biol. 2023; 13(6):220359.

PMID: 37282493 PMC: 10244976. DOI: 10.1098/rsob.220359.


Asynchronous transcription and translation of neurotransmitter-related genes characterize the initial stages of neuronal maturation in Drosophila.

Marques G, Teles-Reis J, Konstantinides N, Brito P, Homem C PLoS Biol. 2023; 21(5):e3002115.

PMID: 37205703 PMC: 10234549. DOI: 10.1371/journal.pbio.3002115.


Origin of wiring specificity in an olfactory map revealed by neuron type-specific, time-lapse imaging of dendrite targeting.

Wong K, Li T, Fu T, Liu G, Lyu C, Kohani S Elife. 2023; 12.

PMID: 36975203 PMC: 10195080. DOI: 10.7554/eLife.85521.


References
1.
Gibbs S, Truman J . Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron. 1998; 20(1):83-93. DOI: 10.1016/s0896-6273(00)80436-5. View

2.
Timofeev K, Joly W, Hadjieconomou D, Salecker I . Localized netrins act as positional cues to control layer-specific targeting of photoreceptor axons in Drosophila. Neuron. 2012; 75(1):80-93. PMC: 3398394. DOI: 10.1016/j.neuron.2012.04.037. View

3.
Ting C, McQueen P, Pandya N, Lin T, Yang M, Reddy O . Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron. 2014; 81(4):830-846. PMC: 4004379. DOI: 10.1016/j.neuron.2013.12.012. View

4.
Clandinin T, Lee C, Herman T, Lee R, Yang A, Ovasapyan S . Drosophila LAR regulates R1-R6 and R7 target specificity in the visual system. Neuron. 2001; 32(2):237-48. DOI: 10.1016/s0896-6273(01)00474-3. View

5.
Prakash S, McLendon H, Dubreuil C, Ghose A, Hwa J, Dennehy K . Complex interactions amongst N-cadherin, DLAR, and Liprin-alpha regulate Drosophila photoreceptor axon targeting. Dev Biol. 2009; 336(1):10-9. PMC: 2783772. DOI: 10.1016/j.ydbio.2009.09.016. View