» Articles » PMID: 26503263

Optogenetic Mapping of Intracortical Circuits Originating from Semilunar Cells in the Piriform Cortex

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2015 Oct 28
PMID 26503263
Citations 17
Authors
Affiliations
Soon will be listed here.
Abstract

Despite its comparatively simple trilaminar architecture, the primary olfactory (piriform) cortex of mammals is capable of performing sophisticated sensory processing, an ability that is thought to depend critically on its extensive associational (intracortical) excitatory circuits. Here, we used a novel transgenic mouse model and optogenetics to measure the connectivity of associational circuits that originate in semilunar (SL) cells in layer 2a of the anterior piriform cortex (aPC). We generated a mouse line (48L) in which channelrhodopsin-2 (ChR) could be selectively expressed in a subset of SL cells. Light-evoked excitatory postsynaptic currents (EPSCs) could be evoked in superficial pyramidal cells (17.4% of n = 86 neurons) and deep pyramidal cells (33.3%, n = 9) in the aPC, but never in ChR- SL cells (0%, n = 34). Thus, SL cells monosynaptically excite pyramidal cells, but not other SL cells. Light-evoked EPSCs were also selectively elicited in 3 classes of GABAergic interneurons in layer 3 of the aPC. Our results show that SL cells are specialized for providing feedforward excitation of specific classes of neurons in the aPC, confirming that SL cells comprise a functionally distinctive input layer.

Citing Articles

Lateral entorhinal cortex afferents reconfigure the activity in piriform cortex circuits.

Pedroncini O, Federman N, Marin-Burgin A Proc Natl Acad Sci U S A. 2024; 121(48):e2414038121.

PMID: 39570314 PMC: 11621770. DOI: 10.1073/pnas.2414038121.


Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal horn of the mouse spinal cord.

Browne T, Smith K, Gradwell M, Dayas C, Callister R, Hughes D Sci Rep. 2024; 14(1):26354.

PMID: 39487174 PMC: 11530558. DOI: 10.1038/s41598-024-73620-4.


Parallel processing by distinct classes of principal neurons in the olfactory cortex.

Nagappan S, Franks K Elife. 2021; 10.

PMID: 34913870 PMC: 8676325. DOI: 10.7554/eLife.73668.


Olfactory Optogenetics: Light Illuminates the Chemical Sensing Mechanisms of Biological Olfactory Systems.

Zhu P, Tian Y, Chen Y, Chen W, Wang P, Du L Biosensors (Basel). 2021; 11(9).

PMID: 34562900 PMC: 8470751. DOI: 10.3390/bios11090309.


Chronic loss of inhibition in piriform cortex following brief, daily optogenetic stimulation.

Ryu B, Nagappan S, Santos-Valencia F, Lee P, Rodriguez E, Lackie M Cell Rep. 2021; 35(3):109001.

PMID: 33882304 PMC: 8102022. DOI: 10.1016/j.celrep.2021.109001.


References
1.
Hagiwara A, Pal S, Sato T, Wienisch M, Murthy V . Optophysiological analysis of associational circuits in the olfactory cortex. Front Neural Circuits. 2012; 6:18. PMC: 3329886. DOI: 10.3389/fncir.2012.00018. View

2.
Tantirigama M, Oswald M, Duynstee C, Hughes S, Empson R . Expression of the developmental transcription factor Fezf2 identifies a distinct subpopulation of layer 5 intratelencephalic-projection neurons in mature mouse motor cortex. J Neurosci. 2014; 34(12):4303-8. PMC: 6608095. DOI: 10.1523/JNEUROSCI.3111-13.2014. View

3.
Suzuki N, Bekkers J . Neural coding by two classes of principal cells in the mouse piriform cortex. J Neurosci. 2006; 26(46):11938-47. PMC: 6674875. DOI: 10.1523/JNEUROSCI.3473-06.2006. View

4.
Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T . Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol. 2003; 467(1):60-79. DOI: 10.1002/cne.10905. View

5.
Sugino K, Hempel C, Miller M, Hattox A, Shapiro P, Wu C . Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nat Neurosci. 2005; 9(1):99-107. DOI: 10.1038/nn1618. View