» Articles » PMID: 26491097

Genetic Identity of Thermosensory Relay Neurons in the Lateral Parabrachial Nucleus

Abstract

The parabrachial nucleus is important for thermoregulation because it relays skin temperature information from the spinal cord to the hypothalamus. Prior work in rats localized thermosensory relay neurons to its lateral subdivision (LPB), but the genetic and neurochemical identity of these neurons remains unknown. To determine the identity of LPB thermosensory neurons, we exposed mice to a warm (36°C) or cool (4°C) ambient temperature. Each condition activated neurons in distinct LPB subregions that receive input from the spinal cord. Most c-Fos+ neurons in these LPB subregions expressed the transcription factor marker FoxP2. Consistent with prior evidence that LPB thermosensory relay neurons are glutamatergic, all FoxP2+ neurons in these subregions colocalized with green fluorescent protein (GFP) in reporter mice for Vglut2, but not for Vgat. Prodynorphin (Pdyn)-expressing neurons were identified using a GFP reporter mouse and formed a caudal subset of LPB FoxP2+ neurons, primarily in the dorsal lateral subnucleus (PBdL). Warm exposure activated many FoxP2+ neurons within PBdL. Half of the c-Fos+ neurons in PBdL were Pdyn+, and most of these project into the preoptic area. Cool exposure activated a separate FoxP2+ cluster of neurons in the far-rostral LPB, which we named the rostral-to-external lateral subnucleus (PBreL). These findings improve our understanding of LPB organization and reveal that Pdyn-IRES-Cre mice provide genetic access to warm-activated, FoxP2+ glutamatergic neurons in PBdL, many of which project to the hypothalamus.

Citing Articles

Afferent Projections to the Calca/CGRP-Expressing Parabrachial Neurons in Mice.

Korkutata M, De Luca R, Fitzgerald B, Khanday M, Arrigoni E, Scammell T J Comp Neurol. 2025; 533(1):e70018.

PMID: 39801453 PMC: 11777123. DOI: 10.1002/cne.70018.


Inhibition of the hypothalamic ventromedial periventricular area activates a dynorphin pathway-dependent thermoregulatory inversion in rats.

Morrison S, Cano G, Hernan S, Chiavetta P, Tupone D Curr Biol. 2024; 35(1):59-76.e4.

PMID: 39626667 PMC: 11706707. DOI: 10.1016/j.cub.2024.11.006.


Prostaglandin E production in the brainstem parabrachial nucleus facilitates the febrile response.

Blomqvist A Temperature (Austin). 2024; 11(4):309-317.

PMID: 39583895 PMC: 11583619. DOI: 10.1080/23328940.2024.2401674.


Central Mechanisms of Thermoregulation and Fever in Mammals.

Nakamura K Adv Exp Med Biol. 2024; 1461:141-159.

PMID: 39289279 DOI: 10.1007/978-981-97-4584-5_10.


Improved leptin sensitivity and increased soluble leptin receptor concentrations may underlie the additive effects of combining PYY [, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ] and exendin-4 on body weight lowering in....

Wulff B, Kuhre R, Selvaraj M, Rehfeld J, Niss K, Fels J Heliyon. 2024; 10(12):e32009.

PMID: 39183855 PMC: 11341243. DOI: 10.1016/j.heliyon.2024.e32009.


References
1.
Rudaya A, Steiner A, Robbins J, Dragic A, Romanovsky A . Thermoregulatory responses to lipopolysaccharide in the mouse: dependence on the dose and ambient temperature. Am J Physiol Regul Integr Comp Physiol. 2005; 289(5):R1244-52. DOI: 10.1152/ajpregu.00370.2005. View

2.
Deisseroth K . Optogenetics. Nat Methods. 2010; 8(1):26-9. PMC: 6814250. DOI: 10.1038/nmeth.f.324. View

3.
Lein E, Hawrylycz M, Ao N, Ayres M, Bensinger A, Bernard A . Genome-wide atlas of gene expression in the adult mouse brain. Nature. 2006; 445(7124):168-76. DOI: 10.1038/nature05453. View

4.
Chou T, Bjorkum A, Gaus S, Lu J, Scammell T, Saper C . Afferents to the ventrolateral preoptic nucleus. J Neurosci. 2002; 22(3):977-90. PMC: 6758527. View

5.
Haskell E, Palca J, Walker J, Berger R, Heller H . The effects of high and low ambient temperatures on human sleep stages. Electroencephalogr Clin Neurophysiol. 1981; 51(5):494-501. DOI: 10.1016/0013-4694(81)90226-1. View