» Articles » PMID: 26486143

SiRNA Delivery by Stimuli-Sensitive Nanocarriers

Overview
Journal Curr Pharm Des
Date 2015 Oct 22
PMID 26486143
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

Since its discovery in the late 1990, small interfering RNA (siRNA) have quickly crept into the biopharmaceutical research as a new and powerful tool for the treatment of different human diseases based on altered gene-expression. Despite promising data from many pre-clinical studies, concrete hurdles still need to be overcome to bring therapeutic siRNAs in clinic. The design of stimuli-sensitive nanopreparations for gene therapy is a lively area of the current research. Compared to conventional systems for siRNA delivery, this type of platform can respond to local stimuli that are characteristics of the pathological area of interest, allowing the release of nucleic acids at the desired site. Acidic pH, de-regulated levels of enzymes, altered redox potential and magnetic field are examples of stimuli exploit to design stimuli-sensitive nanoparticles. In this review, we discuss on recent stimulisensitive strategies for siRNA delivery and we highlight on the potential of combining multiple stimuli-sensitive strategies in the same nano-platform for a better therapeutic outcome.

Citing Articles

Therapeutic delivery of siRNA for the management of breast cancer and triple-negative breast cancer.

Sai B, Dinakar Y, Kumar H, Jain R, Kesharwani S, Kesharwani S Ther Deliv. 2024; 15(11):871-891.

PMID: 39320858 PMC: 11498026. DOI: 10.1080/20415990.2024.2400044.


The Future of Tissue-Targeted Lipid Nanoparticle-Mediated Nucleic Acid Delivery.

Kularatne R, Crist R, Stern S Pharmaceuticals (Basel). 2022; 15(7).

PMID: 35890195 PMC: 9322927. DOI: 10.3390/ph15070897.


Macrophage membrane- and cRGD-functionalized thermosensitive liposomes combined with CPP to realize precise siRNA delivery into tumor cells.

Nai J, Zhang J, Li J, Li H, Yang Y, Yang M Mol Ther Nucleic Acids. 2022; 27:349-362.

PMID: 35024246 PMC: 8724933. DOI: 10.1016/j.omtn.2021.12.016.


Photoactivation of sulfonated polyplexes enables localized gene silencing by DsiRNA in breast cancer cells.

Puri A, Viard M, Zakrevsky P, Zampino S, Chen A, Isemann C Nanomedicine. 2020; 26:102176.

PMID: 32151748 PMC: 8117728. DOI: 10.1016/j.nano.2020.102176.


Integration of Polylactide into Polyethylenimine Facilitates the Safe and Effective Intracellular siRNA Delivery.

Ding G, Meng X, Yang P, Li B, Stauber R, Li Z Polymers (Basel). 2020; 12(2).

PMID: 32074943 PMC: 7077636. DOI: 10.3390/polym12020445.


References
1.
Niu X, Peng Z, Duan W, Wang H, Wang P . Inhibition of HPV 16 E6 oncogene expression by RNA interference in vitro and in vivo. Int J Gynecol Cancer. 2006; 16(2):743-51. DOI: 10.1111/j.1525-1438.2006.00384.x. View

2.
Bisht S, Bhakta G, Mitra S, Maitra A . pDNA loaded calcium phosphate nanoparticles: highly efficient non-viral vector for gene delivery. Int J Pharm. 2004; 288(1):157-68. DOI: 10.1016/j.ijpharm.2004.07.035. View

3.
Cheng X, Kuhn L . Chemotherapy drug delivery from calcium phosphate nanoparticles. Int J Nanomedicine. 2008; 2(4):667-74. PMC: 2676798. View

4.
Pak C, Erukulla R, Ahl P, Janoff A, Meers P . Elastase activated liposomal delivery to nucleated cells. Biochim Biophys Acta. 1999; 1419(2):111-26. DOI: 10.1016/s0005-2736(98)00256-9. View

5.
Wang J, Lu Z, Wientjes M, Au J . Delivery of siRNA therapeutics: barriers and carriers. AAPS J. 2010; 12(4):492-503. PMC: 2977003. DOI: 10.1208/s12248-010-9210-4. View