» Articles » PMID: 26484270

Genome Analysis of Rice-blast Fungus Magnaporthe Oryzae Field Isolates from Southern India

Overview
Journal Genom Data
Specialty Genetics
Date 2015 Oct 21
PMID 26484270
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

The Indian subcontinent is the center of origin and diversity for rice (Oryza sativa L.). The O. sativa ssp. indica is a major food crop grown in India, which occupies the first and second position in area and production, respectively. Blast disease caused by Magnaporthe oryzae is a major constraint to rice production. Here, we report the analysis of genome architecture and sequence variation of two field isolates, B157 and MG01, of the blast fungus from southern India. The 40 Mb genome of B157 and 43 Mb genome of MG01 contained 11,344 and 11,733 predicted genes, respectively. Genomic comparisons unveiled a large set of SNPs and several isolate specific genes in the Indian blast isolates. Avr genes were analyzed in several sequenced Magnaporthe strains; this analysis revealed the presence of Avr-Pizt and Avr-Ace1 genes in all the sequenced isolates. Availability of whole genomes of field isolates from India will contribute to global efforts to understand genetic diversity of M. oryzae population and to track the emergence of virulent pathotypes.

Citing Articles

The extracytoplasmic sigma factor σ supports biofilm formation and increases biocontrol efficacy in Bacillus velezensis 118.

Cai Y, Tao H, Gaballa A, Pi H, Helmann J Sci Rep. 2025; 15(1):5315.

PMID: 39939707 PMC: 11822112. DOI: 10.1038/s41598-025-89284-7.


In silico characterization of five novel disease-resistance proteins in sp. against bacterial leaf blight and rice blast diseases.

Dhiman V, Biswas S, Shekhawat R, Sadhukhan A, Yadav P 3 Biotech. 2024; 14(2):48.

PMID: 38268986 PMC: 10803709. DOI: 10.1007/s13205-023-03893-5.


Advancement in the Breeding, Biotechnological and Genomic Tools towards Development of Durable Genetic Resistance against the Rice Blast Disease.

Sahu P, Sao R, Choudhary D, Thada A, Kumar V, Mondal S Plants (Basel). 2022; 11(18).

PMID: 36145787 PMC: 9504543. DOI: 10.3390/plants11182386.


Understanding the Dynamics of Blast Resistance in Rice- Interactions.

Devanna B, Jain P, Solanke A, Das A, Thakur S, Singh P J Fungi (Basel). 2022; 8(6).

PMID: 35736067 PMC: 9224618. DOI: 10.3390/jof8060584.


Comparative Genomics and Gene Pool Analysis Reveal the Decrease of Genome Diversity and Gene Number in Rice Blast Fungi by Stable Adaption with Rice.

Wu Q, Wang Y, Liu L, Shi K, Li C J Fungi (Basel). 2022; 8(1).

PMID: 35049945 PMC: 8778285. DOI: 10.3390/jof8010005.


References
1.
Kang S, Lebrun M, Farrall L, Valent B . Gain of virulence caused by insertion of a Pot3 transposon in a Magnaporthe grisea avirulence gene. Mol Plant Microbe Interact. 2001; 14(5):671-4. DOI: 10.1094/MPMI.2001.14.5.671. View

2.
Dean R, Talbot N, Ebbole D, Farman M, Mitchell T, Orbach M . The genome sequence of the rice blast fungus Magnaporthe grisea. Nature. 2005; 434(7036):980-6. DOI: 10.1038/nature03449. View

3.
Zheng Y, Zheng W, Lin F, Zhang Y, Yi Y, Wang B . AVR1-CO39 is a predominant locus governing the broad avirulence of Magnaporthe oryzae 2539 on cultivated rice (Oryza sativa L.). Mol Plant Microbe Interact. 2010; 24(1):13-7. DOI: 10.1094/MPMI-10-09-0240. View

4.
Pearson W, Lipman D . Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988; 85(8):2444-8. PMC: 280013. DOI: 10.1073/pnas.85.8.2444. View

5.
Langmead B, Salzberg S . Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012; 9(4):357-9. PMC: 3322381. DOI: 10.1038/nmeth.1923. View