» Articles » PMID: 26483835

Evolution of Epithelial Morphogenesis: Phenotypic Integration Across Multiple Levels of Biological Organization

Overview
Journal Front Genet
Date 2015 Oct 21
PMID 26483835
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Morphogenesis involves the dynamic reorganization of cell and tissue shapes to create the three-dimensional body. Intriguingly, different species have evolved different morphogenetic processes to achieve the same general outcomes during embryonic development. How are meaningful comparisons between species made, and where do the differences lie? In this Perspective, we argue that examining the evolution of embryonic morphogenesis requires the simultaneous consideration of different levels of biological organization: (1) genes, (2) cells, (3) tissues, and (4) the entire egg, or other gestational context. To illustrate the importance of integrating these levels, we use the extraembryonic epithelia of insects-a lineage-specific innovation and evolutionary hotspot-as an exemplary case study. We discuss how recent functional data, primarily from RNAi experiments targeting the Hox3/Zen and U-shaped group transcription factors, provide insights into developmental processes at all four levels. Comparisons of these data from several species both challenge and inform our understanding of homology, in assessing how the process of epithelial morphogenesis has itself evolved.

Citing Articles

Genomic Resources for the Scuttle Fly : A Model Organism for Comparative Developmental Studies in Flies.

Tenger-Trolander A, Amiri E, Gantz V, Kwan C, Sanders S, Sander S bioRxiv. 2025; .

PMID: 39868096 PMC: 11761607. DOI: 10.1101/2025.01.13.631075.


A two-level staging system for the embryonic morphogenesis of the Mediterranean fruit fly (medfly) Ceratitis capitata.

Strobl F, Schmitz A, Schetelig M, Stelzer E PLoS One. 2025; 19(12):e0316391.

PMID: 39774542 PMC: 11684674. DOI: 10.1371/journal.pone.0316391.


Tissue-Level Integration Overrides Gradations of Differentiating Cell Identity in Beetle Extraembryonic Tissue.

Mann K, Panfilio K Cells. 2024; 13(14.

PMID: 39056793 PMC: 11274815. DOI: 10.3390/cells13141211.


Review of extra-embryonic tissues in the closest arthropod relatives, onychophorans and tardigrades.

Treffkorn S, Mayer G, Janssen R Philos Trans R Soc Lond B Biol Sci. 2022; 377(1865):20210270.

PMID: 36252224 PMC: 9574629. DOI: 10.1098/rstb.2021.0270.


Extraembryonic tissue in chelicerates: a review and outlook.

Prpic N, Pechmann M Philos Trans R Soc Lond B Biol Sci. 2022; 377(1865):20210269.

PMID: 36252223 PMC: 9574639. DOI: 10.1098/rstb.2021.0269.


References
1.
Kiehart D, Galbraith C, Edwards K, Rickoll W, Montague R . Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol. 2000; 149(2):471-90. PMC: 2175161. DOI: 10.1083/jcb.149.2.471. View

2.
Chen G, Handel K, Roth S . The maternal NF-kappaB/dorsal gradient of Tribolium castaneum: dynamics of early dorsoventral patterning in a short-germ beetle. Development. 2000; 127(23):5145-56. DOI: 10.1242/dev.127.23.5145. View

3.
Jacinto A, Wood W, Balayo T, Turmaine M, Martinez-Arias A, MARTIN P . Dynamic actin-based epithelial adhesion and cell matching during Drosophila dorsal closure. Curr Biol. 2000; 10(22):1420-6. DOI: 10.1016/s0960-9822(00)00796-x. View

4.
Cook C, Smith M, Telford M, Bastianello A, Akam M . Hox genes and the phylogeny of the arthropods. Curr Biol. 2001; 11(10):759-63. DOI: 10.1016/s0960-9822(01)00222-6. View

5.
Brown S, Fellers J, Shippy T, Richardson E, Maxwell M, Stuart J . Sequence of the Tribolium castaneum homeotic complex: the region corresponding to the Drosophila melanogaster antennapedia complex. Genetics. 2002; 160(3):1067-74. PMC: 1462024. DOI: 10.1093/genetics/160.3.1067. View