» Articles » PMID: 26474787

Impact of Repetitive DNA on Sex Chromosome Evolution in Plants

Overview
Journal Chromosome Res
Date 2015 Oct 18
PMID 26474787
Citations 30
Authors
Affiliations
Soon will be listed here.
Abstract

Structurally and functionally diverged sex chromosomes have evolved in many animals as well as in some plants. Sex chromosomes represent a specific genomic region(s) with locally suppressed recombination. As a consequence, repetitive sequences involving transposable elements, tandem repeats (satellites and microsatellites), and organellar DNA accumulate on the Y (W) chromosomes. In this paper, we review the main types of repetitive elements, their gathering on the Y chromosome, and discuss new findings showing that not only accumulation of various repeats in non-recombining regions but also opposite processes form Y chromosome. The aim of this review is also to discuss the mechanisms of repetitive DNA spread involving (retro) transposition, DNA polymerase slippage or unequal crossing-over, as well as modes of repeat removal by ectopic recombination. The intensity of these processes differs in non-recombining region(s) of sex chromosomes when compared to the recombining parts of genome. We also speculate about the relationship between heterochromatinization and the formation of heteromorphic sex chromosomes.

Citing Articles

Harbinger transposon insertion in ethylene signaling gene leads to emergence of new sexual forms in cucurbits.

Huang H, Zhang S, Choucha F, Verdenaud M, Tan F, Pichot C Nat Commun. 2024; 15(1):4877.

PMID: 38849342 PMC: 11161486. DOI: 10.1038/s41467-024-49250-9.


Sexy ways: approaches to studying plant sex chromosomes.

Hobza R, Bacovsky V, Cegan R, Horakova L, Hubinsky M, Janicek T J Exp Bot. 2024; 75(17):5204-5219.

PMID: 38652048 PMC: 11389836. DOI: 10.1093/jxb/erae173.


Non-canonical bases differentially represented in the sex chromosomes of the dioecious plant Silene latifolia.

Hubinsky M, Hobza R, Starczak M, Gackowski D, Kubat Z, Janicek T J Exp Bot. 2024; 75(13):3849-3861.

PMID: 38652039 PMC: 11233409. DOI: 10.1093/jxb/erae178.


Genomic profiling of dioecious Amaranthus species provides novel insights into species relatedness and sex genes.

Raiyemo D, Bobadilla L, Tranel P BMC Biol. 2023; 21(1):37.

PMID: 36804015 PMC: 9940365. DOI: 10.1186/s12915-023-01539-9.


Sex Determination in : Evidence of Heteromorphic Sex Chromosomes and Sex-Linked NORs.

Ngo Ngwe F, Siljak-Yakovlev S Plants (Basel). 2023; 12(2).

PMID: 36678940 PMC: 9861523. DOI: 10.3390/plants12020228.


References
1.
Vicoso B, Emerson J, Zektser Y, Mahajan S, Bachtrog D . Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013; 11(8):e1001643. PMC: 3754893. DOI: 10.1371/journal.pbio.1001643. View

2.
Shibata F, Hizume M, Kuroki Y . Chromosome painting of Y chromosomes and isolation of a Y chromosome-specific repetitive sequence in the dioecious plant Rumex acetosa. Chromosoma. 1999; 108(4):266-70. DOI: 10.1007/s004120050377. View

3.
Reinders J, Mirouze M, Nicolet J, Paszkowski J . Parent-of-origin control of transgenerational retrotransposon proliferation in Arabidopsis. EMBO Rep. 2013; 14(9):823-8. PMC: 3790068. DOI: 10.1038/embor.2013.95. View

4.
Hobza R, Lengerova M, Svoboda J, Kubekova H, Kejnovsky E, Vyskot B . An accumulation of tandem DNA repeats on the Y chromosome in Silene latifolia during early stages of sex chromosome evolution. Chromosoma. 2006; 115(5):376-82. DOI: 10.1007/s00412-006-0065-5. View

5.
Kubat Z, Zluvova J, Vogel I, Kovacova V, cermak T, Cegan R . Possible mechanisms responsible for absence of a retrotransposon family on a plant Y chromosome. New Phytol. 2014; 202(2):662-678. DOI: 10.1111/nph.12669. View