» Articles » PMID: 26448910

A Multicenter Study of the Early Detection of Synaptic Dysfunction in Mild Cognitive Impairment Using Magnetoencephalography-derived Functional Connectivity

Abstract

Synaptic disruption is an early pathological sign of the neurodegeneration of Dementia of the Alzheimer's type (DAT). The changes in network synchronization are evident in patients with Mild Cognitive Impairment (MCI) at the group level, but there are very few Magnetoencephalography (MEG) studies regarding discrimination at the individual level. In an international multicenter study, we used MEG and functional connectivity metrics to discriminate MCI from normal aging at the individual person level. A labeled sample of features (links) that distinguished MCI patients from controls in a training dataset was used to classify MCI subjects in two testing datasets from four other MEG centers. We identified a pattern of neuronal hypersynchronization in MCI, in which the features that best discriminated MCI were fronto-parietal and interhemispheric links. The hypersynchronization pattern found in the MCI patients was stable across the five different centers, and may be considered an early sign of synaptic disruption and a possible preclinical biomarker for MCI/DAT.

Citing Articles

A Shift Toward Supercritical Brain Dynamics Predicts Alzheimer's Disease Progression.

Javed E, Suarez-Mendez I, Susi G, Roman J, Palva J, Maestu F J Neurosci. 2025; 45(9).

PMID: 40011070 PMC: 11867000. DOI: 10.1523/JNEUROSCI.0688-24.2024.


Machine learning based algorithms for virtual early detection and screening of neurodegenerative and neurocognitive disorders: a systematic-review.

Yousefi M, Akhbari M, Mohamadi Z, Karami S, Dasoomi H, Atabi A Front Neurol. 2024; 15:1413071.

PMID: 39717687 PMC: 11663744. DOI: 10.3389/fneur.2024.1413071.


Enhancing early Alzheimer's disease classification accuracy through the fusion of sMRI and rsMEG data: a deep learning approach.

Liu Y, Wang L, Ning X, Gao Y, Wang D Front Neurosci. 2024; 18:1480871.

PMID: 39633895 PMC: 11615070. DOI: 10.3389/fnins.2024.1480871.


FORTCARE-MCI study protocol: evaluation of Fortasyn Connect in the management of mild cognitive impairment in primary care.

Arrieta E, Baz P, Garcia-Ribas G Front Neurol. 2024; 15:1434210.

PMID: 39463791 PMC: 11503483. DOI: 10.3389/fneur.2024.1434210.


Hyperbolic Graph Embedding of MEG Brain Networks to Study Brain Alterations in Individuals With Subjective Cognitive Decline.

Baker C, Suarez-Mendez I, Smith G, Marsh E, Funke M, Mosher J IEEE J Biomed Health Inform. 2024; 28(12):7357-7368.

PMID: 38896525 PMC: 11700499. DOI: 10.1109/JBHI.2024.3416890.


References
1.
Bajo R, Castellanos N, Cuesta P, Aurtenetxe S, Garcia-Prieto J, Gil-Gregorio P . Differential patterns of connectivity in progressive mild cognitive impairment. Brain Connect. 2012; 2(1):21-4. DOI: 10.1089/brain.2011.0069. View

2.
Buldu J, Bajo R, Maestu F, Castellanos N, Leyva I, Gil P . Reorganization of functional networks in mild cognitive impairment. PLoS One. 2011; 6(5):e19584. PMC: 3100302. DOI: 10.1371/journal.pone.0019584. View

3.
Villemagne V, Burnham S, Bourgeat P, Brown B, Ellis K, Salvado O . Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. Lancet Neurol. 2013; 12(4):357-67. DOI: 10.1016/S1474-4422(13)70044-9. View

4.
Taulu S, Simola J . Spatiotemporal signal space separation method for rejecting nearby interference in MEG measurements. Phys Med Biol. 2006; 51(7):1759-68. DOI: 10.1088/0031-9155/51/7/008. View

5.
Jack Jr C, Wiste H, Weigand S, Rocca W, Knopman D, Mielke M . Age-specific population frequencies of cerebral β-amyloidosis and neurodegeneration among people with normal cognitive function aged 50-89 years: a cross-sectional study. Lancet Neurol. 2014; 13(10):997-1005. PMC: 4324499. DOI: 10.1016/S1474-4422(14)70194-2. View