» Articles » PMID: 26421724

Interactions of L-3,5,3'-Triiodothyronine [corrected], Allopregnanolone, and Ivermectin with the GABAA Receptor: Evidence for Overlapping Intersubunit Binding Modes

Overview
Journal PLoS One
Date 2015 Oct 1
PMID 26421724
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Structural mechanisms of modulation of γ-aminobutyric acid (GABA) type A receptors by neurosteroids and hormones remain unclear. The thyroid hormone L-3,5,3'-triiodothyronine (T3) inhibits GABAA receptors at micromolar concentrations and has common features with neurosteroids such as allopregnanolone (ALLOP). Here we use functional experiments on α2β1γ2 GABAA receptors expressed in Xenopus oocytes to detect competitive interactions between T3 and an agonist (ivermectin, IVM) with a crystallographically determined binding site at subunit interfaces in the transmembrane domain of a homologous receptor (glutamate-gated chloride channel, GluCl). T3 and ALLOP also show competitive effects, supporting the presence of both a T3 and ALLOP binding site at one or more subunit interfaces. Molecular dynamics (MD) simulations over 200 ns are used to investigate the dynamics and energetics of T3 in the identified intersubunit sites. In these simulations, T3 molecules occupying all intersubunit sites (with the exception of the α-β interface) display numerous energetically favorable conformations with multiple hydrogen bonding partners, including previously implicated polar/acidic sidechains and a structurally conserved deformation in the M1 backbone.

Citing Articles

Fibromyalgia pathogenesis explained by a neuroendocrine multistable model.

Demori I, Losacco S, Giordano G, Mucci V, Blanchini F, Burlando B PLoS One. 2024; 19(7):e0303573.

PMID: 38990866 PMC: 11238986. DOI: 10.1371/journal.pone.0303573.


Nongenomic roles of thyroid hormones and their derivatives in adult brain: are these compounds putative neurotransmitters?.

Martin J, Sarkar P Front Endocrinol (Lausanne). 2023; 14:1210540.

PMID: 37701902 PMC: 10494427. DOI: 10.3389/fendo.2023.1210540.


L-3,3',5-triiodothyronine and pregnenolone sulfate inhibit Torpedo nicotinic acetylcholine receptors.

Moffett S, Klein E, Brannigan G, Martin J PLoS One. 2019; 14(10):e0223272.

PMID: 31584962 PMC: 6777777. DOI: 10.1371/journal.pone.0223272.


Alphaxalone Binds in Inner Transmembrane β+-α- Interfaces of α1β3γ2 γ-Aminobutyric Acid Type A Receptors.

Ziemba A, Szabo A, Pierce D, Haburcak M, Stern A, Nourmahnad A Anesthesiology. 2017; 128(2):338-351.

PMID: 29210709 PMC: 5771863. DOI: 10.1097/ALN.0000000000001978.


Ivermectin and its target molecules: shared and unique modulation mechanisms of ion channels and receptors by ivermectin.

Chen I, Kubo Y J Physiol. 2017; 596(10):1833-1845.

PMID: 29063617 PMC: 5978302. DOI: 10.1113/JP275236.


References
1.
Chiara D, Dangott L, Eckenhoff R, Cohen J . Identification of nicotinic acetylcholine receptor amino acids photolabeled by the volatile anesthetic halothane. Biochemistry. 2003; 42(46):13457-67. DOI: 10.1021/bi0351561. View

2.
Obregon M, Morreale de Escobar G, Escobar del Rey F . Concentrations of triiodo-L-thyronine in the plasma and tissues of normal rats, as determined by radioimmunoassay: comparison with results obtained by an isotopic equilibrium technique. Endocrinology. 1978; 103(6):2145-53. DOI: 10.1210/endo-103-6-2145. View

3.
Henin J, Salari R, Murlidaran S, Brannigan G . A predicted binding site for cholesterol on the GABAA receptor. Biophys J. 2014; 106(9):1938-49. PMC: 4017285. DOI: 10.1016/j.bpj.2014.03.024. View

4.
Chapell R, Martin J, Machu T, Leidenheimer N . Direct channel-gating and modulatory effects of triiodothyronine on recombinant GABA(A) receptors. Eur J Pharmacol. 1998; 349(1):115-21. DOI: 10.1016/s0014-2999(98)00182-4. View

5.
ARUNLAKSHANA O, SCHILD H . Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959; 14(1):48-58. PMC: 1481829. DOI: 10.1111/j.1476-5381.1959.tb00928.x. View