» Articles » PMID: 26417503

Observation of Sound-induced Corneal Vibrational Modes by Optical Coherence Tomography

Overview
Specialty Radiology
Date 2015 Sep 30
PMID 26417503
Citations 28
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanical stability of the cornea is critical for maintaining its normal shape and refractive function. Here, we report an observation of the mechanical resonance modes of the cornea excited by sound waves and detected by using phase-sensitive optical coherence tomography. The cornea in bovine eye globes exhibited three resonance modes in a frequency range of 50-400 Hz. The vibration amplitude of the fundamental mode at 80-120 Hz was ~8 µm at a sound pressure level of 100 dB (2 Pa). Vibrography allows the visualization of the radially symmetric profiles of the resonance modes. A dynamic finite-element analysis supports our observation.

Citing Articles

Chirp excitation for natural frequency optical coherence elastography.

Song C, He W, Song P, Feng J, Huang Y, Xu J Biomed Opt Express. 2024; 15(10):5856-5871.

PMID: 39421777 PMC: 11482180. DOI: 10.1364/BOE.536685.


Revealing regional variations in scleral shear modulus in a rabbit eye model using multi-directional ultrasound optical coherence elastography.

Villegas L, Zvietcovich F, Marcos S, Birkenfeld J Sci Rep. 2024; 14(1):21010.

PMID: 39251655 PMC: 11384758. DOI: 10.1038/s41598-024-71343-0.


Learning-based distortion correction enables proximal-scanning endoscopic OCT elastography.

Zhang H, Gu C, Lan Q, Zhang W, Liu C, Yang J Biomed Opt Express. 2024; 15(7):4345-4364.

PMID: 39022540 PMC: 11249688. DOI: 10.1364/BOE.528522.


Dual-channel air-pulse optical coherence elastography for frequency-response analysis.

Song C, He W, Feng J, Twa M, Huang Y, Xu J Biomed Opt Express. 2024; 15(5):3301-3316.

PMID: 38855682 PMC: 11161337. DOI: 10.1364/BOE.520551.


Remote and low-cost intraocular pressure monitoring by deep learning of speckle patterns.

Kalyuzhner Z, Agdarov S, Beiderman Y, Bennet A, Beiderman Y, Zalevsky Z J Biomed Opt. 2024; 29(3):037003.

PMID: 38560532 PMC: 10979815. DOI: 10.1117/1.JBO.29.3.037003.


References
1.
Chang E, Cheng J, Roosli C, Kobler J, Rosowski J, Yun S . Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles. Hear Res. 2013; 304:49-56. PMC: 3769454. DOI: 10.1016/j.heares.2013.06.006. View

2.
Kirwan C, OMalley D, OKeefe M . Corneal hysteresis and corneal resistance factor in keratoectasia: findings using the Reichert ocular response analyzer. Ophthalmologica. 2008; 222(5):334-7. DOI: 10.1159/000145333. View

3.
Scarcelli G, Yun S . Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photonics. 2011; 2:39-43. PMC: 2757783. DOI: 10.1038/nphoton.2007.250. View

4.
Luce D . Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005; 31(1):156-62. DOI: 10.1016/j.jcrs.2004.10.044. View

5.
Morishige N, Wahlert A, Kenney M, Brown D, Kawamoto K, Chikama T . Second-harmonic imaging microscopy of normal human and keratoconus cornea. Invest Ophthalmol Vis Sci. 2007; 48(3):1087-94. PMC: 1894888. DOI: 10.1167/iovs.06-1177. View