Song C, He W, Song P, Feng J, Huang Y, Xu J
Biomed Opt Express. 2024; 15(10):5856-5871.
PMID: 39421777
PMC: 11482180.
DOI: 10.1364/BOE.536685.
Villegas L, Zvietcovich F, Marcos S, Birkenfeld J
Sci Rep. 2024; 14(1):21010.
PMID: 39251655
PMC: 11384758.
DOI: 10.1038/s41598-024-71343-0.
Zhang H, Gu C, Lan Q, Zhang W, Liu C, Yang J
Biomed Opt Express. 2024; 15(7):4345-4364.
PMID: 39022540
PMC: 11249688.
DOI: 10.1364/BOE.528522.
Song C, He W, Feng J, Twa M, Huang Y, Xu J
Biomed Opt Express. 2024; 15(5):3301-3316.
PMID: 38855682
PMC: 11161337.
DOI: 10.1364/BOE.520551.
Kalyuzhner Z, Agdarov S, Beiderman Y, Bennet A, Beiderman Y, Zalevsky Z
J Biomed Opt. 2024; 29(3):037003.
PMID: 38560532
PMC: 10979815.
DOI: 10.1117/1.JBO.29.3.037003.
Corneal Surface Wave Propagation Associated with Intraocular Pressures: OCT Elastography Assessment in a Simplified Eye Model.
Ma G, Cai J, Zhong R, He W, Ye H, Duvvuri C
Bioengineering (Basel). 2023; 10(7).
PMID: 37508781
PMC: 10376591.
DOI: 10.3390/bioengineering10070754.
corneal elastography: A topical review of challenges and opportunities.
Lan G, Twa M, Song C, Feng J, Huang Y, Xu J
Comput Struct Biotechnol J. 2023; 21:2664-2687.
PMID: 37181662
PMC: 10173410.
DOI: 10.1016/j.csbj.2023.04.009.
Co-axial acoustic-based optical coherence vibrometry probe for the quantification of resonance frequency modes in ocular tissue.
McAuley R, Nolan A, Curatolo A, Alexandrov S, Zvietcovich F, Varea Bejar A
Sci Rep. 2022; 12(1):18834.
PMID: 36336702
PMC: 9637745.
DOI: 10.1038/s41598-022-21978-8.
In Vivo Determination of the Human Corneal Elastic Modulus Using Vibrational Optical Coherence Tomography.
Crespo M, Jimenez H, Deshmukh T, Pulido J, Saad A, Silver F
Transl Vis Sci Technol. 2022; 11(7):11.
PMID: 35822948
PMC: 9288150.
DOI: 10.1167/tvst.11.7.11.
Spatial Assessment of Heterogeneous Tissue Natural Frequency Using Micro-Force Optical Coherence Elastography.
Lan G, Shi Q, Wang Y, Ma G, Cai J, Feng J
Front Bioeng Biotechnol. 2022; 10:851094.
PMID: 35360399
PMC: 8962667.
DOI: 10.3389/fbioe.2022.851094.
Vibrational optical coherence tomography detects unique skin fibrotic states: Preliminary results of animal and human studies.
Odell I, Flavell R, Silver F
J Am Acad Dermatol. 2020; 85(3):780-782.
PMID: 32860914
PMC: 9793292.
DOI: 10.1016/j.jaad.2020.08.091.
Characterization of natural frequencies from nanoscale tissue oscillations using dynamic optical coherence elastography.
Lan G, Larin K, Aglyamov S, Twa M
Biomed Opt Express. 2020; 11(6):3301-3318.
PMID: 32637256
PMC: 7316029.
DOI: 10.1364/BOE.391324.
Corneal cross-linking as a treatment for corneal dystrophy with secondary bacterial infection in a Friesian horse.
Casola C, Pot S, Lavaud A, Voelter K
Clin Case Rep. 2020; 8(4):709-715.
PMID: 32274042
PMC: 7141748.
DOI: 10.1002/ccr3.2725.
In vivo evaluation of corneal biomechanical properties by optical coherence elastography at different cross-linking irradiances.
Zhou Y, Wang Y, Shen M, Jin Z, Chen Y, Zhou Y
J Biomed Opt. 2019; 24(10):1-7.
PMID: 31605471
PMC: 7000888.
DOI: 10.1117/1.JBO.24.10.105001.
High-speed OCT-based ocular biometer combined with an air-puff system for determination of induced retraction-free eye dynamics.
Jimenez-Villar A, Maczynska E, Cichanski A, Wojtkowski M, Kaluzny B, Grulkowski I
Biomed Opt Express. 2019; 10(7):3663-3680.
PMID: 31467798
PMC: 6706022.
DOI: 10.1364/BOE.10.003663.
Handheld probe for quantitative micro-elastography.
Fang Q, Krajancich B, Chin L, Zilkens R, Curatolo A, Frewer L
Biomed Opt Express. 2019; 10(8):4034-4049.
PMID: 31452993
PMC: 6701559.
DOI: 10.1364/BOE.10.004034.
Measuring mechanical wave speed, dispersion, and viscoelastic modulus of the cornea using optical coherence elastography.
Ramier A, Tavakol B, Yun S
Opt Express. 2019; 27(12):16635-16649.
PMID: 31252887
PMC: 6825608.
DOI: 10.1364/OE.27.016635.
Theory and design of Schwarzschild scan objective for Optical Coherence Tomography.
Lan G, Twa M
Opt Express. 2019; 27(4):5048-5064.
PMID: 30876110
PMC: 6410919.
DOI: 10.1364/OE.27.005048.
Noninvasive Assessment of Corneal Crosslinking With Phase-Decorrelation Optical Coherence Tomography.
Blackburn B, Gu S, Ford M, De Stefano V, Jenkins M, Dupps Jr W
Invest Ophthalmol Vis Sci. 2019; 60(1):41-51.
PMID: 30601930
PMC: 6322634.
DOI: 10.1167/iovs.18-25535.
Assessment of the influence of viscoelasticity of cornea in animal ex vivo model using air-puff optical coherence tomography and corneal hysteresis.
Maczynska E, Karnowski K, Szulzycki K, Malinowska M, Dolezyczek H, Cichanski A
J Biophotonics. 2018; 12(2):e201800154.
PMID: 30239154
PMC: 7065616.
DOI: 10.1002/jbio.201800154.