» Articles » PMID: 26416349

Raman Spectroscopy As Probe of Nanometre-scale Strain Variations in Graphene

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Sep 30
PMID 26416349
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

Confocal Raman spectroscopy has emerged as a major, versatile workhorse for the non-invasive characterization of graphene. Although it is successfully used to determine the number of layers, the quality of edges, and the effects of strain, doping and disorder, the nature of the experimentally observed broadening of the most prominent Raman 2D line has remained unclear. Here we show that the observed 2D line width contains valuable information on strain variations in graphene on length scales far below the laser spot size, that is, on the nanometre-scale. This finding is highly relevant as it has been shown recently that such nanometre-scaled strain variations limit the carrier mobility in high-quality graphene devices. Consequently, the 2D line width is a good and easily accessible quantity for classifying the crystalline quality, nanometre-scale flatness as well as local electronic properties of graphene, all important for future scientific and industrial applications.

Citing Articles

High-Throughput Computation of ab initio Raman Spectra for Two-Dimensional Materials.

Li G, Gao Y, Xie D, Zhu L, Shi D, Zeng S Sci Data. 2025; 12(1):373.

PMID: 40038321 PMC: 11880192. DOI: 10.1038/s41597-025-04593-w.


Differential Packing of CsMoBr Cluster-Based Halide in Variable Diameter Carbon Nanotubes with Elimination and Polymerization to 1D [MoBr] Ising Model Structures by Steric Confinement.

Faulques E, Ivanov V, Cordier S, Kashtiban R, Molard Y, Duvail J J Am Chem Soc. 2025; 147(9):7345-7359.

PMID: 39968689 PMC: 11887431. DOI: 10.1021/jacs.4c14883.


Analysis of plasmon modes in BiSe/graphene heterostructures via electron energy loss spectroscopy.

Moorsom T, McCauley M, Nizamuddin Bin Muhammad Mustafa A, Ramadan S, Burton J, Sasaki S Sci Rep. 2024; 14(1):30927.

PMID: 39730538 PMC: 11681017. DOI: 10.1038/s41598-024-81488-7.


Moiré Lattice of Twisted Bilayer Graphene as Template for Non-Covalent Functionalization.

Dierke T, Wolff S, Gillen R, Eisenkolb J, Nagel T, Maier S Angew Chem Int Ed Engl. 2024; 64(2):e202414593.

PMID: 39589344 PMC: 11720382. DOI: 10.1002/anie.202414593.


Influence of Synthesis Parameters on Structure and Characteristics of the Graphene Grown Using PECVD on Sapphire Substrate.

Jankauskas S, Meskinis S, Zurauskiene N, Guobiene A Nanomaterials (Basel). 2024; 14(20).

PMID: 39452971 PMC: 11509920. DOI: 10.3390/nano14201635.


References
1.
Pisana S, Lazzeri M, Casiraghi C, Novoselov K, Geim A, Ferrari A . Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater. 2007; 6(3):198-201. DOI: 10.1038/nmat1846. View

2.
Yan J, Zhang Y, Kim P, Pinczuk A . Electric field effect tuning of electron-phonon coupling in graphene. Phys Rev Lett. 2007; 98(16):166802. DOI: 10.1103/PhysRevLett.98.166802. View

3.
Faugeras C, Amado M, Kossacki P, Orlita M, Sprinkle M, Berger C . Tuning the electron-phonon coupling in multilayer graphene with magnetic fields. Phys Rev Lett. 2009; 103(18):186803. DOI: 10.1103/PhysRevLett.103.186803. View

4.
Berciaud S, Li X, Htoon H, Brus L, Doorn S, Heinz T . Intrinsic line shape of the Raman 2D-mode in freestanding graphene monolayers. Nano Lett. 2013; 13(8):3517-23. DOI: 10.1021/nl400917e. View

5.
Lu C, Li G, Watanabe K, Taniguchi T, Andrei E . MoS 2 MoS2: choice substrate for accessing and tuning the electronic properties of graphene. Phys Rev Lett. 2014; 113(15):156804. DOI: 10.1103/PhysRevLett.113.156804. View