» Articles » PMID: 26394834

A Top-down Approach for Fabricating Free-standing Bio-carbon Supercapacitor Electrodes with a Hierarchical Structure

Overview
Journal Sci Rep
Specialty Science
Date 2015 Sep 24
PMID 26394834
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

Biomass has delicate hierarchical structures, which inspired us to develop a cost-effective route to prepare electrode materials with rational nanostructures for use in high-performance storage devices. Here, we demonstrate a novel top-down approach for fabricating bio-carbon materials with stable structures and excellent diffusion pathways; this approach is based on carbonization with controlled chemical activation. The developed free-standing bio-carbon electrode exhibits a high specific capacitance of 204 F g(-1) at 1 A g(-1); good rate capability, as indicated by the residual initial capacitance of 85.5% at 10 A g(-1); and a long cycle life. These performance characteristics are attributed to the outstanding hierarchical structures of the electrode material. Appropriate carbonization conditions enable the bio-carbon materials to inherit the inherent hierarchical texture of the original biomass, thereby facilitating effective channels for fast ion transfer. The macropores and mesopores that result from chemical activation significantly increase the specific surface area and also play the role of temporary ion-buffering reservoirs, further shortening the ionic diffusion distance.

Citing Articles

Green Synthesis of Highly Fluorescent NCQDs: A Comprehensive Study on Synthesis, Characterization, Photophysical Properties, pH Sensing, Heavy Metal Detection, and Solvatochromic Behavior through Hydrothermal Method.

Negi P, Rawat B, Joshi N, Parmar K, Upadhyay S, Kumar N J Fluoresc. 2024; .

PMID: 38724868 DOI: 10.1007/s10895-024-03710-z.


Nature-Inspired Superhydrophobic Coating Materials: Drawing Inspiration from Nature for Enhanced Functionality.

Barthwal S, Uniyal S, Barthwal S Micromachines (Basel). 2024; 15(3).

PMID: 38542636 PMC: 10972411. DOI: 10.3390/mi15030391.


Hierarchical porous carbon aerogels as a versatile electrode material for high-stability supercapacitors.

Yang K, Fan Q, Zhang Y, Ren G, Huang X, Fu P RSC Adv. 2024; 14(2):1123-1133.

PMID: 38174263 PMC: 10759806. DOI: 10.1039/d3ra07014j.


Unleashing the Power of Artificial Intelligence in Materials Design.

Badini S, Regondi S, Pugliese R Materials (Basel). 2023; 16(17).

PMID: 37687620 PMC: 10488647. DOI: 10.3390/ma16175927.


Bioinspired and Bioderived Aqueous Electrocatalysis.

Barrio J, Pedersen A, Favero S, Luo H, Wang M, Sarma S Chem Rev. 2022; 123(5):2311-2348.

PMID: 36354420 PMC: 9999430. DOI: 10.1021/acs.chemrev.2c00429.


References
1.
Kang Y, Chun S, Lee S, Kim B, Kim J, Chung H . All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels. ACS Nano. 2012; 6(7):6400-6. DOI: 10.1021/nn301971r. View

2.
Zhai Y, Dou Y, Zhao D, Fulvio P, Mayes R, Dai S . Carbon materials for chemical capacitive energy storage. Adv Mater. 2011; 23(42):4828-50. DOI: 10.1002/adma.201100984. View

3.
Shin W, Jeong H, Kim B, Kang J, Choi J . Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity. Nano Lett. 2012; 12(5):2283-8. DOI: 10.1021/nl3000908. View

4.
Liang Y, Wu D, Fu R . Carbon microfibers with hierarchical porous structure from electrospun fiber-like natural biopolymer. Sci Rep. 2013; 3:1119. PMC: 3553486. DOI: 10.1038/srep01119. View

5.
Lee S, Yabuuchi N, Gallant B, Chen S, Kim B, Hammond P . High-power lithium batteries from functionalized carbon-nanotube electrodes. Nat Nanotechnol. 2010; 5(7):531-7. DOI: 10.1038/nnano.2010.116. View