» Articles » PMID: 26370936

Bacterial Cell Wall Composition and the Influence of Antibiotics by Cell-wall and Whole-cell NMR

Overview
Specialty Biology
Date 2015 Sep 16
PMID 26370936
Citations 47
Authors
Affiliations
Soon will be listed here.
Abstract

The ability to characterize bacterial cell-wall composition and structure is crucial to understanding the function of the bacterial cell wall, determining drug modes of action and developing new-generation therapeutics. Solid-state NMR has emerged as a powerful tool to quantify chemical composition and to map cell-wall architecture in bacteria and plants, even in the context of unperturbed intact whole cells. In this review, we discuss solid-state NMR approaches to define peptidoglycan composition and to characterize the modes of action of old and new antibiotics, focusing on examples in Staphylococcus aureus. We provide perspectives regarding the selected NMR strategies as we describe the exciting and still-developing cell-wall and whole-cell NMR toolkit. We also discuss specific discoveries regarding the modes of action of vancomycin analogues, including oritavancin, and briefly address the reconsideration of the killing action of β-lactam antibiotics. In such chemical genetics approaches, there is still much to be learned from perturbations enacted by cell-wall assembly inhibitors, and solid-state NMR approaches are poised to address questions of cell-wall composition and assembly in S. aureus and other organisms.

Citing Articles

Nanoarchitectonics for synergistic activity of multimetallic nanohybrids as a possible approach for antimicrobial resistance (AMR).

Yapa P, Munaweera I, Weerasekera M, Weerasinghe L J Biol Inorg Chem. 2024; 29(5):477-498.

PMID: 38995397 DOI: 10.1007/s00775-024-02066-w.


Design of Ultrasound-Driven Charge Interference Therapy for Wound Infection.

Zhou J, Ji X, Wang H, Hsu J, Hua C, Yang X Nano Lett. 2024; 24(26):7868-7878.

PMID: 38912706 PMC: 11334693. DOI: 10.1021/acs.nanolett.4c00930.


Unraveling the metabolic potential of biocontrol fungi through omics data: a key to enhancing large-scaleapplication strategies.

Yang H, Wu X, Sun C, Wang L Acta Biochim Biophys Sin (Shanghai). 2024; 56(6):825-832.

PMID: 38686460 PMC: 11214957. DOI: 10.3724/abbs.2024056.


In Situ Reduction of Silver Nanoparticles/Urushiol-Based Polybenzoxazine Composite Coatings with Enhanced Antimicrobial and Antifouling Performances.

Chen J, Zheng X, Jian R, Bai W, Zheng G, Xie Z Polymers (Basel). 2024; 16(8).

PMID: 38675086 PMC: 11054688. DOI: 10.3390/polym16081167.


New Vision of Cell Walls in from Solid-State NMR Spectroscopy.

Gautam I, Singh K, Widanage M, Yarava J, Wang T J Fungi (Basel). 2024; 10(3).

PMID: 38535227 PMC: 10971067. DOI: 10.3390/jof10030219.


References
1.
Mirelman D, Beck B, Shaw D . The location of the D-alanyl ester in the ribitol teichoic acid of Staphylococcus aureus. Biochem Biophys Res Commun. 1970; 39(4):712-7. DOI: 10.1016/0006-291x(70)90263-9. View

2.
Kim S, Schaefer J . Hydrophobic side-chain length determines activity and conformational heterogeneity of a vancomycin derivative bound to the cell wall of Staphylococcus aureus. Biochemistry. 2008; 47(38):10155-61. PMC: 2656501. DOI: 10.1021/bi800838c. View

3.
Renault M, Boxtel R, Bos M, Post J, Tommassen J, Baldus M . Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci U S A. 2012; 109(13):4863-8. PMC: 3323964. DOI: 10.1073/pnas.1116478109. View

4.
Singh M, Kim S, Sharif S, Preobrazhenskaya M, Schaefer J . REDOR constraints on the peptidoglycan lattice architecture of Staphylococcus aureus and its FemA mutant. Biochim Biophys Acta. 2014; 1848(1 Pt B):363-8. PMC: 4254387. DOI: 10.1016/j.bbamem.2014.05.025. View

5.
De Paepe G . Dipolar recoupling in magic angle spinning solid-state nuclear magnetic resonance. Annu Rev Phys Chem. 2012; 63:661-84. DOI: 10.1146/annurev-physchem-032511-143726. View