» Articles » PMID: 26365182

Off-Target V(D)J Recombination Drives Lymphomagenesis and Is Escalated by Loss of the Rag2 C Terminus

Overview
Journal Cell Rep
Publisher Cell Press
Date 2015 Sep 15
PMID 26365182
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Genome-wide analysis of thymic lymphomas from Tp53(-/-) mice with wild-type or C-terminally truncated Rag2 revealed numerous off-target, RAG-mediated DNA rearrangements. A significantly higher fraction of these errors mutated known and suspected oncogenes/tumor suppressor genes than did sporadic rearrangements (p < 0.0001). This tractable mouse model recapitulates recent findings in human pre-B ALL and allows comparison of wild-type and mutant RAG2. Recurrent, RAG-mediated deletions affected Notch1, Pten, Ikzf1, Jak1, Phlda1, Trat1, and Agpat9. Rag2 truncation substantially increased the frequency of off-target V(D)J recombination. The data suggest that interactions between Rag2 and a specific chromatin modification, H3K4me3, support V(D)J recombination fidelity. Oncogenic effects of off-target rearrangements created by this highly regulated recombinase may need to be considered in design of site-specific nucleases engineered for genome modification.

Citing Articles

A dedicated caller for DUX4 rearrangements from whole-genome sequencing data.

Grobecker P, Berri S, Peden J, Chow K, Fielding C, Armogida I BMC Med Genomics. 2025; 18(1):24.

PMID: 39885506 PMC: 11783778. DOI: 10.1186/s12920-024-02069-1.


RAG1 and RAG2 non-core regions are implicated in leukemogenesis and off-target V(D)J recombination in BCR-ABL1-driven B-cell lineage lymphoblastic leukemia.

Yu X, Zhou W, Chen X, He S, Qin M, Yuan M Elife. 2024; 12.

PMID: 39056282 PMC: 11281782. DOI: 10.7554/eLife.91030.


RAG genomic variation causes autoimmune diseases through specific structure-based mechanisms of enzyme dysregulation.

Haque N, Kawai T, Ratnasinghe B, Wagenknecht J, Urrutia R, Notarangelo L iScience. 2023; 26(10):108040.

PMID: 37854700 PMC: 10579426. DOI: 10.1016/j.isci.2023.108040.


An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays.

Hoolehan W, Harris J, Byrum J, Simpson D, Rodgers K Nucleic Acids Res. 2022; 50(20):11696-11711.

PMID: 36370096 PMC: 9723617. DOI: 10.1093/nar/gkac1038.


Different classes of genomic inserts contribute to human antibody diversity.

Lebedin M, Foglierini M, Khorkova S, Garcia C, Ratswohl C, Davydov A Proc Natl Acad Sci U S A. 2022; 119(36):e2205470119.

PMID: 36037353 PMC: 9457163. DOI: 10.1073/pnas.2205470119.


References
1.
Papaemmanuil E, Rapado I, Li Y, Potter N, Wedge D, Tubio J . RAG-mediated recombination is the predominant driver of oncogenic rearrangement in ETV6-RUNX1 acute lymphoblastic leukemia. Nat Genet. 2014; 46(2):116-25. PMC: 3960636. DOI: 10.1038/ng.2874. View

2.
Flex E, Petrangeli V, Stella L, Chiaretti S, Hornakova T, Knoops L . Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia. J Exp Med. 2008; 205(4):751-8. PMC: 2292215. DOI: 10.1084/jem.20072182. View

3.
Sabo P, Kuehn M, Thurman R, Johnson B, Johnson E, Cao H . Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods. 2006; 3(7):511-8. DOI: 10.1038/nmeth890. View

4.
Agarwal A . Lysophospholipid acyltransferases: 1-acylglycerol-3-phosphate O-acyltransferases. From discovery to disease. Curr Opin Lipidol. 2012; 23(4):290-302. DOI: 10.1097/MOL.0b013e328354fcf4. View

5.
Vigano M, Ivanek R, Balwierz P, Berninger P, van Nimwegen E, Karjalainen K . An epigenetic profile of early T-cell development from multipotent progenitors to committed T-cell descendants. Eur J Immunol. 2013; 44(4):1181-93. DOI: 10.1002/eji.201344022. View