» Articles » PMID: 26341207

Nanoarchaeota, Their Sulfolobales Host, and Nanoarchaeota Virus Distribution Across Yellowstone National Park Hot Springs

Overview
Date 2015 Sep 6
PMID 26341207
Citations 36
Authors
Affiliations
Soon will be listed here.
Abstract

Nanoarchaeota are obligate symbionts with reduced genomes first described from marine thermal vent environments. Here, both community metagenomics and single-cell analysis revealed the presence of Nanoarchaeota in high-temperature (∼90°C), acidic (pH ≈ 2.5 to 3.0) hot springs in Yellowstone National Park (YNP) (United States). Single-cell genome analysis of two cells resulted in two nearly identical genomes, with an estimated full length of 650 kbp. Genome comparison showed that these two cells are more closely related to the recently proposed Nanobsidianus stetteri from a more neutral YNP hot spring than to the marine Nanoarchaeum equitans. Single-cell and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis of environmental hot spring samples identified the host of the YNP Nanoarchaeota as a Sulfolobales species known to inhabit the hot springs. Furthermore, we demonstrate that Nanoarchaeota are widespread in acidic to near neutral hot springs in YNP. An integrated viral sequence was also found within one Nanoarchaeota single-cell genome and further analysis of the purified viral fraction from environmental samples indicates that this is likely a virus replicating within the YNP Nanoarchaeota.

Citing Articles

Hyperexpansion of genetic diversity and metabolic capacity of extremophilic bacteria and archaea in ancient Andean lake sediments.

Lezcano M, Bornemann T, Sanchez-Garcia L, Carrizo D, Adam P, Esser S Microbiome. 2024; 12(1):176.

PMID: 39300577 PMC: 11411797. DOI: 10.1186/s40168-024-01878-x.


-linked protein glycosylation in (formerly DPANN) archaea and their hosts.

Nakagawa S, Sakai H, Shimamura S, Takamatsu Y, Kato S, Yagi H J Bacteriol. 2024; 206(9):e0020524.

PMID: 39194224 PMC: 11411935. DOI: 10.1128/jb.00205-24.


Selective lipid recruitment by an archaeal DPANN symbiont from its host.

Ding S, Hamm J, Bale N, Sinninghe Damste J, Spang A Nat Commun. 2024; 15(1):3405.

PMID: 38649682 PMC: 11035636. DOI: 10.1038/s41467-024-47750-2.


The discovery of Nanopusillus phoceensis sheds light on the diversity of the microbiota nanoarchaea.

Hassani Y, Aboudharam G, Drancourt M, Grine G iScience. 2024; 27(4):109488.

PMID: 38595798 PMC: 11001627. DOI: 10.1016/j.isci.2024.109488.


A predicted CRISPR-mediated symbiosis between uncultivated archaea.

Esser S, Rahlff J, Zhao W, Predl M, Plewka J, Sures K Nat Microbiol. 2023; 8(9):1619-1633.

PMID: 37500801 DOI: 10.1038/s41564-023-01439-2.


References
1.
Schattner P, Brooks A, Lowe T . The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005; 33(Web Server issue):W686-9. PMC: 1160127. DOI: 10.1093/nar/gki366. View

2.
Stepanauskas R, Sieracki M . Matching phylogeny and metabolism in the uncultured marine bacteria, one cell at a time. Proc Natl Acad Sci U S A. 2007; 104(21):9052-7. PMC: 1885626. DOI: 10.1073/pnas.0700496104. View

3.
Inskeep W, Jay Z, Tringe S, Herrgard M, Rusch D . The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem. Front Microbiol. 2013; 4:67. PMC: 3644721. DOI: 10.3389/fmicb.2013.00067. View

4.
Abulencia C, Wyborski D, Garcia J, Podar M, Chen W, Chang S . Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol. 2006; 72(5):3291-301. PMC: 1472342. DOI: 10.1128/AEM.72.5.3291-3301.2006. View

5.
Randau L, Schroder I, Soll D . Life without RNase P. Nature. 2008; 453(7191):120-3. DOI: 10.1038/nature06833. View