» Articles » PMID: 26324772

Use of Functional Polymorphisms To Elucidate the Peptide Binding Site of TAP Complexes

Overview
Journal J Immunol
Date 2015 Sep 2
PMID 26324772
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

TAP1/TAP2 complexes translocate peptides from the cytosol to the endoplasmic reticulum lumen to enable immune surveillance by CD8(+) T cells. Peptide transport is preceded by peptide binding to a cytosol-accessible surface of TAP1/TAP2 complexes, but the location of the TAP peptide-binding pocket remains unknown. Guided by the known contributions of polymorphic TAP variants to peptide selection, we combined homology modeling of TAP with experimental measurements to identify several TAP residues that interact with peptides. Models for peptide-TAP complexes were generated, which indicate bent conformation for peptides. The peptide binding site of TAP is located at the hydrophobic boundary of the cytosolic membrane leaflet, with striking parallels to the glutathione binding site of NaAtm1, a transporter that functions in bacterial heavy metal detoxification. These studies illustrate the conservation of the ligand recognition modes of bacterial and mammalians transporters involved in peptide-guided cellular surveillance.

Citing Articles

Principles of peptide selection by the transporter associated with antigen processing.

Lee J, Oldham M, Manon V, Chen J Proc Natl Acad Sci U S A. 2024; 121(23):e2320879121.

PMID: 38805290 PMC: 11161800. DOI: 10.1073/pnas.2320879121.


The lysosomal transporter TAPL has a dual role as peptide translocator and phosphatidylserine floppase.

Park J, Kim S, Jang E, Choi S, Han H, Ju S Nat Commun. 2022; 13(1):5851.

PMID: 36195619 PMC: 9532399. DOI: 10.1038/s41467-022-33593-2.


New vistas unfold: Chicken MHC molecules reveal unexpected ways to present peptides to the immune system.

Halabi S, Kaufman J Front Immunol. 2022; 13:886672.

PMID: 35967451 PMC: 9372762. DOI: 10.3389/fimmu.2022.886672.


Spotlight on TAP and its vital role in antigen presentation and cross-presentation.

Mantel I, Sadiq B, Blander J Mol Immunol. 2022; 142:105-119.

PMID: 34973498 PMC: 9241385. DOI: 10.1016/j.molimm.2021.12.013.


Selecting for Altered Substrate Specificity Reveals the Evolutionary Flexibility of ATP-Binding Cassette Transporters.

Srikant S, Gaudet R, Murray A Curr Biol. 2020; 30(9):1689-1702.e6.

PMID: 32220325 PMC: 7243462. DOI: 10.1016/j.cub.2020.02.077.


References
1.
Gorbulev S, Abele R, Tampe R . Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proc Natl Acad Sci U S A. 2001; 98(7):3732-7. PMC: 31121. DOI: 10.1073/pnas.061467898. View

2.
Lapinski P, Neubig R, Raghavan M . Walker A lysine mutations of TAP1 and TAP2 interfere with peptide translocation but not peptide binding. J Biol Chem. 2000; 276(10):7526-33. DOI: 10.1074/jbc.M009448200. View

3.
Lankat-Buttgereit B, Tampe R . The transporter associated with antigen processing: function and implications in human diseases. Physiol Rev. 2002; 82(1):187-204. DOI: 10.1152/physrev.00025.2001. View

4.
Koch J, Guntrum R, Heintke S, Kyritsis C, Tampe R . Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J Biol Chem. 2003; 279(11):10142-7. DOI: 10.1074/jbc.M312816200. View

5.
Schumacher T, Kantesaria D, Heemels M, Ashton-Rickardt P, Shepherd J, Fruh K . Peptide length and sequence specificity of the mouse TAP1/TAP2 translocator. J Exp Med. 1994; 179(2):533-40. PMC: 2191358. DOI: 10.1084/jem.179.2.533. View