» Articles » PMID: 26322583

Arithmetic and Local Circuitry Underlying Dopamine Prediction Errors

Overview
Journal Nature
Specialty Science
Date 2015 Sep 1
PMID 26322583
Citations 177
Authors
Affiliations
Soon will be listed here.
Abstract

Dopamine neurons are thought to facilitate learning by comparing actual and expected reward. Despite two decades of investigation, little is known about how this comparison is made. To determine how dopamine neurons calculate prediction error, we combined optogenetic manipulations with extracellular recordings in the ventral tegmental area while mice engaged in classical conditioning. Here we demonstrate, by manipulating the temporal expectation of reward, that dopamine neurons perform subtraction, a computation that is ideal for reinforcement learning but rarely observed in the brain. Furthermore, selectively exciting and inhibiting neighbouring GABA (γ-aminobutyric acid) neurons in the ventral tegmental area reveals that these neurons are a source of subtraction: they inhibit dopamine neurons when reward is expected, causally contributing to prediction-error calculations. Finally, bilaterally stimulating ventral tegmental area GABA neurons dramatically reduces anticipatory licking to conditioned odours, consistent with an important role for these neurons in reinforcement learning. Together, our results uncover the arithmetic and local circuitry underlying dopamine prediction errors.

Citing Articles

Cross-species dissection of the modular role of the ventral tegmental area in depressive disorders.

Morris L, Beltran J, Beltran J, Murrough J, Morel C Neuroscience. 2025; 569:248-266.

PMID: 39914519 PMC: 11885014. DOI: 10.1016/j.neuroscience.2025.02.008.


Distributed representations of temporally accumulated reward prediction errors in the mouse cortex.

Makino H, Suhaimi A Sci Adv. 2025; 11(4):eadi4782.

PMID: 39841828 PMC: 11753378. DOI: 10.1126/sciadv.adi4782.


Multi-study fMRI outlooks on subcortical BOLD responses in the stop-signal paradigm.

Isherwood S, Kemp S, Miletic S, Stevenson N, Bazin P, Forstmann B Elife. 2025; 12.

PMID: 39841120 PMC: 11753779. DOI: 10.7554/eLife.88652.


Policy Complexity Suppresses Dopamine Responses.

Gershman S, Lak A J Neurosci. 2025; 45(9).

PMID: 39788740 PMC: 11866995. DOI: 10.1523/JNEUROSCI.1756-24.2024.


Dopaminergic responses to identity prediction errors depend differently on the orbitofrontal cortex and hippocampus.

Takahashi Y, Zhang Z, Kahnt T, Schoenbaum G bioRxiv. 2025; .

PMID: 39763911 PMC: 11702580. DOI: 10.1101/2024.12.11.628003.


References
1.
Schultz W, Dayan P, Montague P . A neural substrate of prediction and reward. Science. 1997; 275(5306):1593-9. DOI: 10.1126/science.275.5306.1593. View

2.
Han X, Chow B, Zhou H, Klapoetke N, Chuong A, Rajimehr R . A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci. 2011; 5:18. PMC: 3082132. DOI: 10.3389/fnsys.2011.00018. View

3.
Holt G, Koch C . Shunting inhibition does not have a divisive effect on firing rates. Neural Comput. 1997; 9(5):1001-13. DOI: 10.1162/neco.1997.9.5.1001. View

4.
Hong S, Jhou T, Smith M, Saleem K, Hikosaka O . Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J Neurosci. 2011; 31(32):11457-71. PMC: 3315151. DOI: 10.1523/JNEUROSCI.1384-11.2011. View

5.
Ludvig E, Sutton R, Kehoe E . Stimulus representation and the timing of reward-prediction errors in models of the dopamine system. Neural Comput. 2008; 20(12):3034-54. DOI: 10.1162/neco.2008.11-07-654. View