» Articles » PMID: 26320580

Crystal Structures of the Extracellular Domain from PepT1 and PepT2 Provide Novel Insights into Mammalian Peptide Transport

Abstract

Mammals obtain nitrogen via the uptake of di- and tri-peptides in the gastrointestinal tract through the action of PepT1 and PepT2, which are members of the POT family of proton-coupled oligopeptide transporters. PepT1 and PepT2 also play an important role in drug transport in the human body. Recent crystal structures of bacterial homologs revealed a conserved peptide-binding site and mechanism of transport. However, a key structural difference exists between bacterial and mammalian homologs with only the latter containing a large extracellular domain, the function of which is currently unknown. Here, we present the crystal structure of the extracellular domain from both PepT1 and PepT2 that reveal two immunoglobulin-like folds connected in tandem, providing structural insight into mammalian peptide transport. Functional and biophysical studies demonstrate that these domains interact with the intestinal protease trypsin, suggesting a role in clustering proteolytic activity to the site of peptide transport in eukaryotic cells.

Citing Articles

First crystal structure of the DUF2436 domain of virulence proteins from Porphyromonas gingivalis.

Kim B, Hwang J, Im S, Do H, Shim Y, Lee J Acta Crystallogr F Struct Biol Commun. 2024; 80(Pt 10):252-262.

PMID: 39325582 PMC: 11448926. DOI: 10.1107/S2053230X24008185.


Structure of the human heparan-α-glucosaminide -acetyltransferase (HGSNAT).

Navratna V, Kumar A, Rana J, Mosalaganti S Elife. 2024; 13.

PMID: 39196614 PMC: 11357348. DOI: 10.7554/eLife.93510.


The mechanism of mammalian proton-coupled peptide transporters.

Lichtinger S, Parker J, Newstead S, Biggin P Elife. 2024; 13.

PMID: 39042711 PMC: 11265797. DOI: 10.7554/eLife.96507.


Structure of the human heparan-α-glucosaminide -acetyltransferase (HGSNAT).

Navratna V, Kumar A, Rana J, Mosalaganti S bioRxiv. 2023; .

PMID: 37961489 PMC: 10634761. DOI: 10.1101/2023.10.23.563672.


Molecular Insights to the Structure-Interaction Relationships of Human Proton-Coupled Oligopeptide Transporters (PepTs).

Luo Y, Gao J, Jiang X, Zhu L, Zhou Q, Murray M Pharmaceutics. 2023; 15(10).

PMID: 37896276 PMC: 10609898. DOI: 10.3390/pharmaceutics15102517.


References
1.
Svergun D . Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999; 76(6):2879-86. PMC: 1300260. DOI: 10.1016/S0006-3495(99)77443-6. View

2.
Fallingborg J . Intraluminal pH of the human gastrointestinal tract. Dan Med Bull. 1999; 46(3):183-96. View

3.
Matthews D . Intestinal absorption of peptides. Physiol Rev. 1975; 55(4):537-608. DOI: 10.1152/physrev.1975.55.4.537. View

4.
Ashida K, Katsura T, Motohashi H, Saito H, Inui K . Thyroid hormone regulates the activity and expression of the peptide transporter PEPT1 in Caco-2 cells. Am J Physiol Gastrointest Liver Physiol. 2002; 282(4):G617-23. DOI: 10.1152/ajpgi.00344.2001. View

5.
Daniel H, Rubio-Aliaga I . An update on renal peptide transporters. Am J Physiol Renal Physiol. 2003; 284(5):F885-92. DOI: 10.1152/ajprenal.00123.2002. View