» Articles » PMID: 26301255

Pressure Modulation Algorithm to Separate Cerebral Hemodynamic Signals from Extracerebral Artifacts

Overview
Journal Neurophotonics
Date 2015 Aug 25
PMID 26301255
Citations 62
Authors
Affiliations
Soon will be listed here.
Abstract

We introduce and validate a pressure measurement paradigm that reduces extracerebral contamination from superficial tissues in optical monitoring of cerebral blood flow with diffuse correlation spectroscopy (DCS). The scheme determines subject-specific contributions of extracerebral and cerebral tissues to the DCS signal by utilizing probe pressure modulation to induce variations in extracerebral blood flow. For analysis, the head is modeled as a two-layer medium and is probed with long and short source-detector separations. Then a combination of pressure modulation and a modified Beer-Lambert law for flow enables experimenters to linearly relate differential DCS signals to cerebral and extracerebral blood flow variation without a priori anatomical information. We demonstrate the algorithm's ability to isolate cerebral blood flow during a finger-tapping task and during graded scalp ischemia in healthy adults. Finally, we adapt the pressure modulation algorithm to ameliorate extracerebral contamination in monitoring of cerebral blood oxygenation and blood volume by near-infrared spectroscopy.

Citing Articles

Near-infrared diffuse optical characterization of human thyroid using ultrasound-guided hybrid time-domain and diffuse correlation spectroscopies.

Fernandez Esteberena P, Cortese L, Zanoletti M, Lo Presti G, Aranda Velazquez G, Ruiz Janer S Biomed Opt Express. 2024; 15(12):7035-7055.

PMID: 39679411 PMC: 11640565. DOI: 10.1364/BOE.538141.


All-optics technique for monitoring absolute cerebral blood flow: validation against magnetic resonance imaging perfusion.

Shoemaker L, Samaei S, Deller G, Wang D, Milej D, St Lawrence K Neurophotonics. 2024; 11(4):045002.

PMID: 39372121 PMC: 11448701. DOI: 10.1117/1.NPh.11.4.045002.


Chassis-based fiber-coupled optical probe design for reproducible quantitative diffuse optical spectroscopy measurements.

Matlis G, Zhang Q, Benson E, Weeks M, Andersen K, Jahnavi J PLoS One. 2024; 19(7):e0305254.

PMID: 39052686 PMC: 11271963. DOI: 10.1371/journal.pone.0305254.


Pathlength-selective, interferometric diffuse correlation spectroscopy.

Robinson M, Renna M, Otic N, Kierul O, Muldoon A, Franceschini M bioRxiv. 2024; .

PMID: 38979367 PMC: 11230245. DOI: 10.1101/2024.06.21.600096.


Comprehensive workflow and its validation for simulating diffuse speckle statistics for optical blood flow measurements.

Kobayashi Frisk L, Verma M, Beslija F, Lin C, Patil N, Chetia S Biomed Opt Express. 2024; 15(2):875-899.

PMID: 38404339 PMC: 10890893. DOI: 10.1364/BOE.502421.


References
1.
PERMUTT S, RILEY R . HEMODYNAMICS OF COLLAPSIBLE VESSELS WITH TONE: THE VASCULAR WATERFALL. J Appl Physiol. 1963; 18:924-32. DOI: 10.1152/jappl.1963.18.5.924. View

2.
Jacques S . Optical properties of biological tissues: a review. Phys Med Biol. 2013; 58(11):R37-61. DOI: 10.1088/0031-9155/58/11/R37. View

3.
Liu Q, Ramanujam N . Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media. J Opt Soc Am A Opt Image Sci Vis. 2007; 24(4):1011-25. DOI: 10.1364/josaa.24.001011. View

4.
Durduran T, Choe R, Baker W, Yodh A . Diffuse Optics for Tissue Monitoring and Tomography. Rep Prog Phys. 2015; 73(7). PMC: 4482362. DOI: 10.1088/0034-4885/73/7/076701. View

5.
Diamond S, Huppert T, Kolehmainen V, Franceschini M, Kaipio J, Arridge S . Dynamic physiological modeling for functional diffuse optical tomography. Neuroimage. 2005; 30(1):88-101. PMC: 2670202. DOI: 10.1016/j.neuroimage.2005.09.016. View