» Articles » PMID: 26299904

Transient Optogenetic Inactivation of the Medial Entorhinal Cortex Biases the Active Population of Hippocampal Neurons

Overview
Journal Hippocampus
Publisher Wiley
Date 2015 Aug 25
PMID 26299904
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

The mechanisms that enable the hippocampal network to express the appropriate spatial representation for a particular circumstance are not well understood. Previous studies suggest that the medial entorhinal cortex (MEC) may have a role in reproducibly selecting the hippocampal representation of an environment. To examine how ongoing MEC activity is continually integrated by the hippocampus, we performed transient unilateral optogenetic inactivations of the MEC while simultaneously recording place cell activity in CA1. Inactivation of the MEC caused a partial remapping in the CA1 population without diminishing the degree of spatial tuning across the active cell assembly. These changes remained stable irrespective of intermittent disruption of MEC input, indicating that while MEC input is integrated over long time scales to bias the active population, there are mechanisms for stabilizing the population of active neurons independent of the MEC. We find that MEC inputs to the hippocampus shape its ongoing activity by biasing the participation of the neurons in the active network, thereby influencing how the hippocampus selectively represents information.

Citing Articles

Growth Hormone Alters Remapping in the Hippocampal Area CA1 in a Novel Environment.

Haugland K, Jordbraek S, Knutsen E, Kjelstrup K, Brun V eNeuro. 2025; 12(2).

PMID: 39900507 PMC: 11814925. DOI: 10.1523/ENEURO.0237-24.2024.


Remapping revisited: how the hippocampus represents different spaces.

Fenton A Nat Rev Neurosci. 2024; 25(6):428-448.

PMID: 38714834 DOI: 10.1038/s41583-024-00817-x.


Grid cells: the missing link in understanding Parkinson's disease?.

Reinshagen A Front Neurosci. 2024; 18:1276714.

PMID: 38389787 PMC: 10881698. DOI: 10.3389/fnins.2024.1276714.


Adult-born granule cells facilitate remapping of spatial and non-spatial representations in the dentate gyrus.

Tuncdemir S, Grosmark A, Chung H, Luna V, Lacefield C, Losonczy A Neuron. 2023; 111(24):4024-4039.e7.

PMID: 37820723 PMC: 10841867. DOI: 10.1016/j.neuron.2023.09.016.


Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation.

Bowler J, Losonczy A Neuron. 2023; 111(24):4071-4085.e6.

PMID: 37816349 PMC: 11490304. DOI: 10.1016/j.neuron.2023.09.013.


References
1.
Komorowski R, Manns J, Eichenbaum H . Robust conjunctive item-place coding by hippocampal neurons parallels learning what happens where. J Neurosci. 2009; 29(31):9918-29. PMC: 2746931. DOI: 10.1523/JNEUROSCI.1378-09.2009. View

2.
Colgin L, Leutgeb S, Jezek K, Leutgeb J, Moser E, McNaughton B . Attractor-map versus autoassociation based attractor dynamics in the hippocampal network. J Neurophysiol. 2010; 104(1):35-50. PMC: 2904215. DOI: 10.1152/jn.00202.2010. View

3.
Navawongse R, Eichenbaum H . Distinct pathways for rule-based retrieval and spatial mapping of memory representations in hippocampal neurons. J Neurosci. 2013; 33(3):1002-13. PMC: 3566234. DOI: 10.1523/JNEUROSCI.3891-12.2013. View

4.
Fyhn M, Hafting T, Treves A, Moser M, Moser E . Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 2007; 446(7132):190-4. DOI: 10.1038/nature05601. View

5.
Han X, Chow B, Zhou H, Klapoetke N, Chuong A, Rajimehr R . A high-light sensitivity optical neural silencer: development and application to optogenetic control of non-human primate cortex. Front Syst Neurosci. 2011; 5:18. PMC: 3082132. DOI: 10.3389/fnsys.2011.00018. View