» Articles » PMID: 26278538

Omics on Bioleaching: Current and Future Impacts

Overview
Date 2015 Aug 18
PMID 26278538
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Bioleaching corresponds to the microbial-catalyzed process of conversion of insoluble metals into soluble forms. As an applied biotechnology globally used, it represents an extremely interesting field of research where omics techniques can be applied in terms of knowledge development, but moreover in terms of process design, control, and optimization. In this mini-review, the current state of genomics, proteomics, and metabolomics of bioleaching and the major impacts of these analytical methods at industrial scale are highlighted. In summary, genomics has been essential in the determination of the biodiversity of leaching processes and for development of conceptual and functional metabolic models. Proteomic impacts are mostly related to microbe-mineral interaction analysis, including copper resistance and biofilm formation. Early steps of metabolomics in the field of bioleaching have shown a significant potential for the use of metabolites as industrial biomarkers. Development directions are given in order to enhance the future impacts of the omics in biohydrometallurgy.

Citing Articles

Advances in bioleaching of waste lithium batteries under metal ion stress.

Zhang X, Shi H, Tan N, Zhu M, Tan W, Daramola D Bioresour Bioprocess. 2024; 10(1):19.

PMID: 38647921 PMC: 10992134. DOI: 10.1186/s40643-023-00636-5.


From Genes to Bioleaching: Unraveling Sulfur Metabolism in Genus.

Ibanez A, Garrido-Chamorro S, Coque J, Barreiro C Genes (Basel). 2023; 14(9).

PMID: 37761912 PMC: 10531304. DOI: 10.3390/genes14091772.


Progress in bioleaching: fundamentals and mechanisms of microbial metal sulfide oxidation - part A.

Vera M, Schippers A, Hedrich S, Sand W Appl Microbiol Biotechnol. 2022; 106(21):6933-6952.

PMID: 36194263 PMC: 9592645. DOI: 10.1007/s00253-022-12168-7.


Beyond Risk: Bacterial Biofilms and Their Regulating Approaches.

Muhammad M, Idris A, Fan X, Guo Y, Yu Y, Jin X Front Microbiol. 2020; 11:928.

PMID: 32508772 PMC: 7253578. DOI: 10.3389/fmicb.2020.00928.


Specific mechanism of Acidithiobacillus caldus extracellular polymeric substances in the bioleaching of copper-bearing sulfide ore.

Feng S, Li K, Huang Z, Tong Y, Yang H PLoS One. 2019; 14(4):e0213945.

PMID: 30978195 PMC: 6461249. DOI: 10.1371/journal.pone.0213945.


References
1.
Guo L, Brugger K, Liu C, Shah S, Zheng H, Zhu Y . Genome analyses of Icelandic strains of Sulfolobus islandicus, model organisms for genetic and virus-host interaction studies. J Bacteriol. 2011; 193(7):1672-80. PMC: 3067641. DOI: 10.1128/JB.01487-10. View

2.
You X, Liu C, Wang S, Jiang C, Shah S, Prangishvili D . Genomic analysis of Acidianus hospitalis W1 a host for studying crenarchaeal virus and plasmid life cycles. Extremophiles. 2011; 15(4):487-97. PMC: 3119797. DOI: 10.1007/s00792-011-0379-y. View

3.
Denef V, VerBerkmoes N, Shah M, Abraham P, Lefsrud M, Hettich R . Proteomics-inferred genome typing (PIGT) demonstrates inter-population recombination as a strategy for environmental adaptation. Environ Microbiol. 2008; 11(2):313-25. DOI: 10.1111/j.1462-2920.2008.01769.x. View

4.
Bobadilla Fazzini R, Levican G, Parada P . Acidithiobacillus thiooxidans secretome containing a newly described lipoprotein Licanantase enhances chalcopyrite bioleaching rate. Appl Microbiol Biotechnol. 2010; 89(3):771-80. PMC: 3023857. DOI: 10.1007/s00253-010-3063-8. View

5.
Martinez P, Galvez S, Ohtsuka N, Budinich M, Cortes M, Serpell C . Metabolomic study of Chilean biomining bacteria Acidithiobacillus ferrooxidans strain Wenelen and Acidithiobacillus thiooxidans strain Licanantay. Metabolomics. 2013; 9(1):247-257. PMC: 3548112. DOI: 10.1007/s11306-012-0443-3. View