» Articles » PMID: 26273516

Role of FGF/FGFR Signaling in Skeletal Development and Homeostasis: Learning from Mouse Models

Overview
Journal Bone Res
Date 2015 Aug 15
PMID 26273516
Citations 125
Authors
Affiliations
Soon will be listed here.
Abstract

Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis.

Citing Articles

Fibroblast growth factor receptor 3 mutation promotes HSPB6-mediated cuproptosis in hypochondroplasia by impairing chondrocyte autophagy.

Chen J, He D, Yuan C, Li N, Shi B, Niu C J Orthop Translat. 2025; 51:68-81.

PMID: 39991457 PMC: 11847030. DOI: 10.1016/j.jot.2025.01.011.


Targeted allele-specific knockdown human recombinant ferritin nanoparticles for personalized treatment of Crouzon syndrome.

Tiberio F, Salvati M, Polito L, Tisci G, Vita A, Parolini O Mol Ther Nucleic Acids. 2025; 36(1):102427.

PMID: 39906733 PMC: 11790506. DOI: 10.1016/j.omtn.2024.102427.


Genetic profiling of osteosarcoma in an adolescent using a next‑generation sequencing panel and Sanger sequencing: A case report and review of the literature.

Chantre-Justino M, Silvestre R, De Castro T, Luz E, Pinheiro R, Caruso A Biomed Rep. 2025; 22(3):42.

PMID: 39810900 PMC: 11729137. DOI: 10.3892/br.2025.1920.


The transcription factor BBX regulates phosphate homeostasis through the modulation of FGF23.

Lee S, Kim J, Ihn H, Choi J, Kwon T, Shin H Exp Mol Med. 2024; 56(11):2436-2448.

PMID: 39482539 PMC: 11612488. DOI: 10.1038/s12276-024-01341-9.


Genome-wide association studies for pelvic organ prolapse in the Japanese population.

Matsunami M, Imamura M, Ashikari A, Liu X, Tomizuka K, Hikino K Commun Biol. 2024; 7(1):1188.

PMID: 39349682 PMC: 11443051. DOI: 10.1038/s42003-024-06875-2.


References
1.
Colvin J, Green R, Schmahl J, Capel B, Ornitz D . Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell. 2001; 104(6):875-89. DOI: 10.1016/s0092-8674(01)00284-7. View

2.
Ornitz D, Marie P . FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease. Genes Dev. 2002; 16(12):1446-65. DOI: 10.1101/gad.990702. View

3.
Larsson T, Yu X, Davis S, Draman M, Mooney S, Cullen M . A novel recessive mutation in fibroblast growth factor-23 causes familial tumoral calcinosis. J Clin Endocrinol Metab. 2005; 90(4):2424-7. DOI: 10.1210/jc.2004-2238. View

4.
Wang Y, Sun M, Uhlhorn V, Zhou X, Peter I, Martinez-Abadias N . Activation of p38 MAPK pathway in the skull abnormalities of Apert syndrome Fgfr2(+P253R) mice. BMC Dev Biol. 2010; 10:22. PMC: 2838826. DOI: 10.1186/1471-213X-10-22. View

5.
Clinkenbeard E, Farrow E, Summers L, Cass T, Roberts J, Bayt C . Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice. J Bone Miner Res. 2013; 29(2):361-9. PMC: 5240191. DOI: 10.1002/jbmr.2049. View