» Articles » PMID: 26256004

FoxO Transcription Factors and Regenerative Pathways in Diabetes Mellitus

Overview
Date 2015 Aug 11
PMID 26256004
Citations 45
Authors
Affiliations
Soon will be listed here.
Abstract

Mammalian forkhead transcription factors of the O class (FoxO) are exciting targets under consideration for the development of new clinical entities to treat metabolic disorders and diabetes mellitus (DM). DM, a disorder that currently affects greater than 350 million individuals globally, can become a devastating disease that leads to cellular injury through oxidative stress pathways and affects multiple systems of the body. FoxO proteins can regulate insulin signaling, gluconeogenesis, insulin resistance, immune cell migration, and cell senescence. FoxO proteins also control cell fate through oxidative stress and pathways of autophagy and apoptosis that either lead to tissue regeneration or cell demise. Furthermore, FoxO signaling can be dependent upon signal transduction pathways that include silent mating type information regulation 2 homolog 1 (S. cerevisiae) (SIRT1), Wnt, and Wnt1 inducible signaling pathway protein 1 (WISP1). Cellular metabolic pathways driven by FoxO proteins are complex, can lead to variable clinical outcomes, and require in-depth analysis of the epigenetic and post-translation protein modifications that drive FoxO protein activation and degradation.

Citing Articles

Single-cell RNA sequencing reveals the dysfunctional characteristics of PBMCs in patients with type 2 diabetes mellitus.

Zhao J, Fang Z Front Immunol. 2025; 15:1501660.

PMID: 39916961 PMC: 11798774. DOI: 10.3389/fimmu.2024.1501660.


The Effect of Forkhead Box O1 Single Nucleotide Polymorphisms on Cortical Thickness and White Matter Integrity in High Suicide Risk Patients.

Shin D, Kang Y, Kim A, Tae W, Han M, Han K Psychiatry Investig. 2024; 21(11):1238-1250.

PMID: 39610235 PMC: 11611456. DOI: 10.30773/pi.2024.0044.


MicroRNA-183 cluster: a promising biomarker and therapeutic target in gastrointestinal malignancies.

Zheng Y, Sukocheva O, Tse E, Neganova M, Aleksandrova Y, Zhao R Am J Cancer Res. 2024; 13(12):6147-6175.

PMID: 38187051 PMC: 10767355.


The impact of aging and oxidative stress in metabolic and nervous system disorders: programmed cell death and molecular signal transduction crosstalk.

Maiese K Front Immunol. 2023; 14:1273570.

PMID: 38022638 PMC: 10663950. DOI: 10.3389/fimmu.2023.1273570.


Innovative therapeutic strategies for cardiovascular disease.

Maiese K EXCLI J. 2023; 22:690-715.

PMID: 37593239 PMC: 10427777. DOI: 10.17179/excli2023-6306.


References
1.
Haldar S, Chakrabarty A, Chowdhury S, Haldar A, Sengupta S, Bhattacharyya M . Oxidative stress-related genes in type 2 diabetes: association analysis and their clinical impact. Biochem Genet. 2015; 53(4-6):93-119. DOI: 10.1007/s10528-015-9675-z. View

2.
Liu Y, Shi S, Gu Z, Du Y, Liu M, Yan S . Impaired autophagic function in rat islets with aging. Age (Dordr). 2012; 35(5):1531-44. PMC: 3776112. DOI: 10.1007/s11357-012-9456-0. View

3.
Maiese K, Chong Z, Wang S, Shang Y . Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci. 2012; 13(11):13830-66. PMC: 3509553. DOI: 10.3390/ijms131113830. View

4.
Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P . Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci. 2014; 15(9):16848-84. PMC: 4200827. DOI: 10.3390/ijms150916848. View

5.
Hou J, Wang S, Shang Y, Chong Z, Maiese K . Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res. 2011; 8(3):220-35. PMC: 3149772. DOI: 10.2174/156720211796558069. View