» Articles » PMID: 26248710

Host Genetic Resistance to Root-knot Nematodes, Meloidogyne Spp., in Solanaceae: from Genes to the Field

Overview
Journal Pest Manag Sci
Specialties Biology
Toxicology
Date 2015 Aug 8
PMID 26248710
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Root-knot nematodes (RKNs) heavily damage most solanaceous crops worldwide. Fortunately, major resistance genes are available in a number of plant species, and their use provides a safe and economically relevant strategy for RKN control. From a structural point of view, these genes often harbour NBS-LRR motifs (i.e. a nucleotide binding site and a leucine rich repeat region near the carboxy terminus) and are organised in syntenic clusters in solanaceous genomes. Their introgression from wild to cultivated plants remains a challenge for breeders, although facilitated by marker-assisted selection. As shown with other pathosystems, the genetic background into which the resistance genes are introgressed is of prime importance to both the expression of the resistance and its durability, as exemplified by the recent discovery of quantitative trait loci conferring quantitative resistance to RKNs in pepper. The deployment of resistance genes at a large scale may result in the emergence and spread of virulent nematode populations able to overcome them, as already reported in tomato and pepper. Therefore, careful management of the resistance genes available in solanaceous crops is crucial to avoid significant reduction in the duration of RKN genetic control in the field. From that perspective, only rational management combining breeding and cultivation practices will allow the design and implementation of innovative, sustainable crop production systems that protect the resistance genes and maintain their durability.

Citing Articles

A nematode-inducible promoter can effectively drives RNAi construct to confer Meloidogyne incognita resistance in tomato.

Thorat Y, Dutta T, Jain P, Subramaniam K, Sirohi A Plant Cell Rep. 2023; 43(1):3.

PMID: 38117317 DOI: 10.1007/s00299-023-03114-6.


The status of the CRISPR/Cas9 research in plant-nematode interactions.

Dutta T, Ray S, Phani V Planta. 2023; 258(6):103.

PMID: 37874380 DOI: 10.1007/s00425-023-04259-0.


Transcriptome analysis of two tobacco varieties with contrast resistance to in response to PVY MN infection.

Xu S, Tian P, Jiang Z, Chen X, Li B, Sun J Front Plant Sci. 2023; 14:1213494.

PMID: 37701805 PMC: 10493397. DOI: 10.3389/fpls.2023.1213494.


The NLR gene family: from discovery to present day.

Chou W, Jha S, Linhoff M, Ting J Nat Rev Immunol. 2023; 23(10):635-654.

PMID: 36973360 PMC: 11171412. DOI: 10.1038/s41577-023-00849-x.


Understanding Molecular Plant-Nematode Interactions to Develop Alternative Approaches for Nematode Control.

Abd-Elgawad M Plants (Basel). 2022; 11(16).

PMID: 36015444 PMC: 9415668. DOI: 10.3390/plants11162141.