» Articles » PMID: 26224580

The Impact of Statins on Biological Characteristics of Stem Cells Provides a Novel Explanation for Their Pleiotropic Beneficial and Adverse Clinical Effects

Overview
Specialties Cell Biology
Physiology
Date 2015 Jul 31
PMID 26224580
Citations 25
Authors
Affiliations
Soon will be listed here.
Abstract

Statins reduce atherosclerotic events and cardiovascular mortality. Their side effects include memory loss, myopathy, cataract formation, and increased risk of diabetes. As cardiovascular mortality relates to plaque instability, which depends on the integrity of the fibrous cap, we hypothesize that the inhibition of the potential of mesenchymal stem cells (MSCs) to differentiate into macrophages would help to explain the long known, but less understood "non-lipid-associated" or pleiotropic benefit of statins on cardiovascular mortality. In the present investigation, MSCs were treated with atorvastatin or pravastatin at clinically relevant concentrations and their proliferation, differentiation potential, and gene expression profile were assessed. Both types of statins reduced the overall growth rate of MSCs. Especially, statins reduced the potential of MSCs to differentiate into macrophages while they exhibited no direct effect on macrophage function. These findings suggest that the limited capacity of MSCs to differentiate into macrophages could possibly result in decreased macrophage density within the arterial plaque, reduced inflammation, and subsequently enhance plaque stability. This would explain the non-lipid-associated reduction in cardiovascular events. On a negative side, statins impaired the osteogenic and chondrogenic differentiation potential of MSCs and increased cell senescence and apoptosis, as indicated by upregulation of p16, p53 and Caspase 3, 8, and 9. Statins also impaired the expression of DNA repair genes, including XRCC4, XRCC6, and Apex1. While the effect on macrophage differentiation explains the beneficial side of statins, their impact on other biologic properties of stem cells provides a novel explanation for their adverse clinical effects.

Citing Articles

Embryotoxicity of statins and other prescribed drugs with reported off-target effects on cholesterol biosynthesis.

Hartley T, Abdelmagid H, Abdulsalam Z, Mansion A, Howe E, Ramirez D Reprod Toxicol. 2024; 132:108820.

PMID: 39667684 PMC: 11890968. DOI: 10.1016/j.reprotox.2024.108820.


Prescription patterns of statins in cirrhotic patients: a survey among primary care physicians and cardiologists.

Butt M, Karna R, Umar S, Chaturvedi A, Murali S, Singh T Proc (Bayl Univ Med Cent). 2024; 37(5):769-773.

PMID: 39165822 PMC: 11332644. DOI: 10.1080/08998280.2024.2372753.


Crosstalk between Lipid Metabolism and Bone Homeostasis: Exploring Intricate Signaling Relationships.

Xiao H, Li W, Qin Y, Lin Z, Qian C, Wu M Research (Wash D C). 2024; 7:0447.

PMID: 39165638 PMC: 11334918. DOI: 10.34133/research.0447.


Aging of the eye: Lessons from cataracts and age-related macular degeneration.

Cvekl A, Vijg J Ageing Res Rev. 2024; 99:102407.

PMID: 38977082 PMC: 11288402. DOI: 10.1016/j.arr.2024.102407.


Exploring the Relationship Between Atorvastatin and Memory Loss: A Comprehensive Analysis Integrating Real-World Pharmacovigilance and Mendelian Randomization.

Chen K, Chen Y, Huang H Drugs R D. 2024; 24(2):317-329.

PMID: 38963511 PMC: 11315864. DOI: 10.1007/s40268-024-00474-6.