Prenyltransferases As Key Enzymes in Primary and Secondary Metabolism
Overview
Biotechnology
Microbiology
Authors
Affiliations
Attachment of isoprene units to various acceptors by prenylation plays an important role in primary and secondary metabolism of living organisms. Protein prenylation belongs to posttranslational modification and is involved in cellular regulation process. Prenylated secondary metabolites usually demonstrate promising biological and pharmacological activities. Prenyl transfer reactions catalyzed by prenyltransferases represent the key steps in the biosynthesis and contribute significantly to the structural and biological diversity of these compounds. In the last decade, remarkable progress has been achieved in the biochemical, molecular, and structural biological investigations of prenyltransferases, especially on those of the members of the dimethylallyltryptophan synthase (DMATS) superfamily. Until now, more than 40 of such soluble enzymes are identified and characterized biochemically. They catalyze usually regioselective and stereoselective prenylations of a series of aromatic substances including tryptophan, tryptophan-containing peptides, and other indole derivatives as well as tyrosine or even nitrogen-free substrates. Crystal structures of a number of prenyltransferases have been solved in the past 10 years and provide a solid basis for understanding the mechanism of prenyl transfer reactions.
Wang W, Wang P, Ma C, Li K, Wang Z, Liu Y Nat Commun. 2025; 16(1):144.
PMID: 39747040 PMC: 11696170. DOI: 10.1038/s41467-024-55537-8.
Li J, Eltaher S, Freeman B, Singh S, Ali G Front Plant Sci. 2024; 15:1433436.
PMID: 39193209 PMC: 11347836. DOI: 10.3389/fpls.2024.1433436.
Chunkrua P, Leschonski K, Gran-Scheuch A, Vreeke G, Vincken J, Fraaije M Appl Microbiol Biotechnol. 2024; 108(1):421.
PMID: 39023782 PMC: 11258057. DOI: 10.1007/s00253-024-13254-8.
The Property of a Key Amino Acid Determines the Function of Farnesyl Pyrophosphate Synthase in NGR.
Wang Y, Zhang N, Yan J, Li C, Zeng N, Wang D Curr Issues Mol Biol. 2024; 46(4):3108-3121.
PMID: 38666925 PMC: 11048977. DOI: 10.3390/cimb46040195.
El-Kashef D, Obidake D, Schiedlauske K, Deipenbrock A, Scharf S, Wang H Mar Drugs. 2024; 22(1).
PMID: 38276643 PMC: 10820104. DOI: 10.3390/md22010005.