» Articles » PMID: 26203860

Genome-editing Tools for Stem Cell Biology

Overview
Journal Cell Death Dis
Date 2015 Jul 24
PMID 26203860
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

Human pluripotent stem cells provide a versatile platform for regenerative studies, drug testing and disease modeling. That the expression of only four transcription factors, Oct4, Klf4, Sox2 and c-Myc (OKSM), is sufficient for generation of induced pluripotent stem cells (iPSCs) from differentiated somatic cells has revolutionized the field and also highlighted the importance of OKSM as targets for genome editing. A number of novel genome-editing systems have been developed recently. In this review, we focus on successful applications of several such systems for generation of iPSCs. In particular, we discuss genome-editing systems based on zinc-finger fusion proteins (ZFs), transcription activator-like effectors (TALEs) and an RNA-guided DNA-specific nuclease, Cas9, derived from the bacterial defense system against viruses that utilizes clustered regularly interspaced short palindromic repeats (CRISPR).

Citing Articles

Baboon Envelope Pseudotyped "Nanoblades" Carrying Cas9/gRNA Complexes Allow Efficient Genome Editing in Human T, B, and CD34 Cells and Knock-in of AAV6-Encoded Donor DNA in CD34 Cells.

Gutierrez-Guerrero A, Abrey Recalde M, Mangeot P, Costa C, Bernadin O, Perian S Front Genome Ed. 2021; 3:604371.

PMID: 34713246 PMC: 8525375. DOI: 10.3389/fgeed.2021.604371.


Comprehensive off-target analysis of dCas9-SAM-mediated HIV reactivation via long noncoding RNA and mRNA profiling.

Zhang Y, Arango G, Li F, Xiao X, Putatunda R, Yu J BMC Med Genomics. 2018; 11(1):78.

PMID: 30200981 PMC: 6131778. DOI: 10.1186/s12920-018-0394-2.


Modeling rare diseases with induced pluripotent stem cell technology.

Anderson R, Francis K Mol Cell Probes. 2018; 40:52-59.

PMID: 29307697 PMC: 6033695. DOI: 10.1016/j.mcp.2018.01.001.


Induced Pluripotent Stem Cells in Huntington's Disease Research: Progress and Opportunity.

Tousley A, Kegel-Gleason K J Huntingtons Dis. 2016; 5(2):99-131.

PMID: 27372054 PMC: 4942721. DOI: 10.3233/JHD-160199.


High Efficiency CRISPR/Cas9-mediated Gene Editing in Primary Human T-cells Using Mutant Adenoviral E4orf6/E1b55k "Helper" Proteins.

Gwiazda K, Grier A, Sahni J, Burleigh S, Martin U, Yang J Mol Ther. 2016; 24(9):1570-80.

PMID: 27203437 PMC: 5113096. DOI: 10.1038/mt.2016.105.


References
1.
Yeom Y, Ha H, Balling R, Scholer H, Artzt K . Structure, expression and chromosomal location of the Oct-4 gene. Mech Dev. 1991; 35(3):171-9. DOI: 10.1016/0925-4773(91)90016-y. View

2.
Shen B, Zhang J, Wu H, Wang J, Ma K, Li Z . Generation of gene-modified mice via Cas9/RNA-mediated gene targeting. Cell Res. 2013; 23(5):720-3. PMC: 3641603. DOI: 10.1038/cr.2013.46. View

3.
Deveau H, Barrangou R, Garneau J, Labonte J, Fremaux C, Boyaval P . Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol. 2007; 190(4):1390-400. PMC: 2238228. DOI: 10.1128/JB.01412-07. View

4.
Gore A, Li Z, Fung H, Young J, Agarwal S, Antosiewicz-Bourget J . Somatic coding mutations in human induced pluripotent stem cells. Nature. 2011; 471(7336):63-7. PMC: 3074107. DOI: 10.1038/nature09805. View

5.
Carbery I, Ji D, Harrington A, Brown V, Weinstein E, Liaw L . Targeted genome modification in mice using zinc-finger nucleases. Genetics. 2010; 186(2):451-9. PMC: 2954478. DOI: 10.1534/genetics.110.117002. View