» Articles » PMID: 26190275

Non-wetting Surface-driven High-aspect-ratio Crystalline Grain Growth for Efficient Hybrid Perovskite Solar Cells

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Jul 21
PMID 26190275
Citations 122
Authors
Affiliations
Soon will be listed here.
Abstract

Large-aspect-ratio grains are needed in polycrystalline thin-film solar cells for reduced charge recombination at grain boundaries; however, the grain size in organolead trihalide perovskite (OTP) films is generally limited by the film thickness. Here we report the growth of OTP grains with high average aspect ratio of 2.3-7.9 on a wide range of non-wetting hole transport layers (HTLs), which increase nucleus spacing by suppressing heterogeneous nucleation and facilitate grain boundary migration in grain growth by imposing less drag force. The reduced grain boundary area and improved crystallinity dramatically reduce the charge recombination in OTP thin films to the level in OTP single crystals. Combining the high work function of several HTLs, a high stabilized device efficiency of 18.3% in low-temperature-processed planar-heterojunction OTP devices under 1 sun illumination is achieved. This simple method in enhancing OTP morphology paves the way for its application in other optoelectronic devices for enhanced performance.

Citing Articles

Organic Salt-Doped Polymer Alloy: A New Prototype Hole Transporter for High-Photovoltaic-Performance Perovskite Solar Cells.

Zhang B, Lan S, Tsai C, Chiang C, Wu C ACS Appl Mater Interfaces. 2025; 17(7):10674-10685.

PMID: 39907077 PMC: 11843538. DOI: 10.1021/acsami.4c19907.


The impact of interfacial quality and nanoscale performance disorder on the stability of alloyed perovskite solar cells.

Frohna K, Chosy C, Al-Ashouri A, Scheler F, Chiang Y, Dubajic M Nat Energy. 2025; 10(1):66-76.

PMID: 39885942 PMC: 11774756. DOI: 10.1038/s41560-024-01660-1.


Poly(amic acid)-Polyimide Copolymer Interfacial Layers for Self-Powered CHNHPbI Photovoltaic Photodiodes.

Kim W, Park J, Jeong H, Lee K, Yang S, Choi E Polymers (Basel). 2025; 17(2).

PMID: 39861236 PMC: 11768244. DOI: 10.3390/polym17020163.


Suppressing Interface Defects in Perovskite Solar Cells via Introducing a Plant-Derived Ergothioneine Self-Assembled Monolayer.

Yeh C, Hsu H, Tsao J, Wu H, Lin T, Wu C Materials (Basel). 2024; 17(23).

PMID: 39685175 PMC: 11641942. DOI: 10.3390/ma17235739.


Perovskite Thin-Film Transistors for Ultra-Low-Voltage Neuromorphic Visions.

Rong Y, Yu D, Zhang X, Wang T, Wang J, Li Y Adv Sci (Weinh). 2024; 11(48):e2410015.

PMID: 39501928 PMC: 11672285. DOI: 10.1002/advs.202410015.


References
1.
Jeon N, Noh J, Kim Y, Yang W, Ryu S, Seok S . Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater. 2014; 13(9):897-903. DOI: 10.1038/nmat4014. View

2.
Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M . Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013; 499(7458):316-9. DOI: 10.1038/nature12340. View

3.
Xiao Z, Yuan Y, Shao Y, Wang Q, Dong Q, Bi C . Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat Mater. 2014; 14(2):193-8. DOI: 10.1038/nmat4150. View

4.
Chen Q, Zhou H, Song T, Luo S, Hong Z, Duan H . Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014; 14(7):4158-63. DOI: 10.1021/nl501838y. View

5.
Lee M, Teuscher J, Miyasaka T, Murakami T, Snaith H . Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012; 338(6107):643-7. DOI: 10.1126/science.1228604. View