» Articles » PMID: 26162881

YvoA and CcpA Repress the Expression of ChiB in Bacillus Thuringiensis

Overview
Date 2015 Jul 12
PMID 26162881
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

Bacillus thuringiensis produces chitinases, which are involved in its antifungal activity and facilitate its insecticidal activity. In our recent work, we found that a 16-bp sequence, drechiB (AGACTTCGTGATGTCT), downstream of the minimal promoter region of the chitinase B gene (chiB) was a critical site for the inducible expression of chiB in B. thuringiensis Bti75. In this work, we show that a GntR family transcriptional regulator (named YvoABt), which is homologous to YvoA of Bacillus subtilis, can specifically bind to the drechiB oligonucleotide sequences in vitro by using electrophoretic mobility shift assays (EMSAs) and isothermal titration calorimetry (ITC) assays. The results of quantitative real-time reverse transcription-PCR (qRT-PCR) and Western blotting indicated that deletion of yvoA caused an ∼7.5-fold increase in the expression level of chiB. Furthermore, binding of purified YvoABt to its target DNA could be abolished by glucosamine-6-phosphate (GlcN-6-P). We also confirmed, in the presence of the phosphoprotein Hpr-Ser₄₅-P, that purified CcpABt bound specifically to the promoter of chiB, which contains the "crechiB" sequence (ATAAAGCGTTTACA). According to the results of qRT-PCR and Western blotting, deletion of ccpA resulted in a 39-fold increase in the chiB expression level, and glucose no longer influenced the expression of chiB. We confirm that chiB is negatively controlled by both CcpABt and YvoABt in Bti75.

Citing Articles

NupR Responding to Multiple Signals Is a Nucleoside Permease Regulator in Bacillus thuringiensis BMB171.

Qin J, Cao Z, Cai X, Fang Y, An B, Li X Microbiol Spectr. 2022; 10(4):e0154322.

PMID: 35862946 PMC: 9430930. DOI: 10.1128/spectrum.01543-22.


Implications of carbon catabolite repression for plant-microbe interactions.

Franzino T, Boubakri H, Cernava T, Abrouk D, Achouak W, Reverchon S Plant Commun. 2022; 3(2):100272.

PMID: 35529946 PMC: 9073323. DOI: 10.1016/j.xplc.2021.100272.


Chitinases of : Phylogeny, Modular Structure, and Applied Potentials.

Martinez-Zavala S, Barboza-Perez U, Hernandez-Guzman G, Bideshi D, Barboza-Corona J Front Microbiol. 2020; 10:3032.

PMID: 31993038 PMC: 6971178. DOI: 10.3389/fmicb.2019.03032.


Scavenger receptor-C acts as a receptor for Bacillus thuringiensis vegetative insecticidal protein Vip3Aa and mediates the internalization of Vip3Aa via endocytosis.

Jiang K, Hou X, Tan T, Cao Z, Mei S, Yan B PLoS Pathog. 2018; 14(10):e1007347.

PMID: 30286203 PMC: 6191154. DOI: 10.1371/journal.ppat.1007347.


NagR Is a Pleiotropic and Dual Transcriptional Regulator in .

Cao Z, Tan T, Zhang Y, Han L, Hou X, Ma H Front Microbiol. 2018; 9:1899.

PMID: 30254611 PMC: 6141813. DOI: 10.3389/fmicb.2018.01899.

References
1.
Puri-Taneja A, Schau M, Chen Y, Hulett F . Regulators of the Bacillus subtilis cydABCD operon: identification of a negative regulator, CcpA, and a positive regulator, ResD. J Bacteriol. 2007; 189(9):3348-58. PMC: 1855890. DOI: 10.1128/JB.00050-07. View

2.
Driss F, Kallassy-Awad M, Zouari N, Jaoua S . Molecular characterization of a novel chitinase from Bacillus thuringiensis subsp. kurstaki. J Appl Microbiol. 2005; 99(4):945-53. DOI: 10.1111/j.1365-2672.2005.02639.x. View

3.
Xie C, Luo Y, Chen Y, Cai J . Construction of a promoter-probe vector for Bacillus thuringiensis: the identification of cis-acting elements of the chiA locus. Curr Microbiol. 2012; 64(5):492-500. DOI: 10.1007/s00284-012-0100-0. View

4.
Rigali S, Titgemeyer F, Barends S, Mulder S, Thomae A, Hopwood D . Feast or famine: the global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 2008; 9(7):670-5. PMC: 2475330. DOI: 10.1038/embor.2008.83. View

5.
Fujita Y . Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem. 2009; 73(2):245-59. DOI: 10.1271/bbb.80479. View