» Articles » PMID: 26108993

Associative Memory Realized by a Reconfigurable Memristive Hopfield Neural Network

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Jun 26
PMID 26108993
Citations 33
Authors
Affiliations
Soon will be listed here.
Abstract

Although synaptic behaviours of memristors have been widely demonstrated, implementation of an even simple artificial neural network is still a great challenge. In this work, we demonstrate the associative memory on the basis of a memristive Hopfield network. Different patterns can be stored into the memristive Hopfield network by tuning the resistance of the memristors, and the pre-stored patterns can be successfully retrieved directly or through some associative intermediate states, being analogous to the associative memory behaviour. Both single-associative memory and multi-associative memories can be realized with the memristive Hopfield network.

Citing Articles

A simple model for Behavioral Time Scale Synaptic Plasticity (BTSP) provides content addressable memory with binary synapses and one-shot learning.

Wu Y, Maass W Nat Commun. 2025; 16(1):342.

PMID: 39747916 PMC: 11695864. DOI: 10.1038/s41467-024-55563-6.


A self-learning magnetic Hopfield neural network with intrinsic gradient descent adaption.

Niu C, Zhang H, Xu C, Hu W, Wu Y, Wu Y Proc Natl Acad Sci U S A. 2024; 121(51):e2416294121.

PMID: 39671188 PMC: 11665918. DOI: 10.1073/pnas.2416294121.


An emergent attractor network in a passive resistive switching circuit.

Li Y, Wang S, Yang K, Yang Y, Sun Z Nat Commun. 2024; 15(1):7683.

PMID: 39266507 PMC: 11393082. DOI: 10.1038/s41467-024-52132-9.


A network control theory pipeline for studying the dynamics of the structural connectome.

Parkes L, Kim J, Stiso J, Brynildsen J, Cieslak M, Covitz S Nat Protoc. 2024; 19(12):3721-3749.

PMID: 39075309 DOI: 10.1038/s41596-024-01023-w.


Memristive Neural Networks for Predicting Seizure Activity.

Gerasimova S, Lebedeva A, Gromov N, Malkov A, Fedulina A, Levanova T Sovrem Tekhnologii Med. 2024; 15(4):30-38.

PMID: 38434190 PMC: 10902902. DOI: 10.17691/stm2023.15.4.03.


References
1.
Hopfield J, Tank D . Computing with neural circuits: a model. Science. 1986; 233(4764):625-33. DOI: 10.1126/science.3755256. View

2.
Alibart F, Zamanidoost E, Strukov D . Pattern classification by memristive crossbar circuits using ex situ and in situ training. Nat Commun. 2013; 4:2072. DOI: 10.1038/ncomms3072. View

3.
Li Y, Zhong Y, Xu L, Zhang J, Xu X, Sun H . Ultrafast synaptic events in a chalcogenide memristor. Sci Rep. 2013; 3:1619. PMC: 3619133. DOI: 10.1038/srep01619. View

4.
Yang J, Strukov D, Stewart D . Memristive devices for computing. Nat Nanotechnol. 2012; 8(1):13-24. DOI: 10.1038/nnano.2012.240. View

5.
Krzysteczko P, Munchenberger J, Schafers M, Reiss G, Thomas A . The memristive magnetic tunnel junction as a nanoscopic synapse-neuron system. Adv Mater. 2012; 24(6):762-6. DOI: 10.1002/adma.201103723. View