» Articles » PMID: 26108967

Lead Iodide Perovskite Light-emitting Field-effect Transistor

Overview
Journal Nat Commun
Specialty Biology
Date 2015 Jun 26
PMID 26108967
Citations 64
Authors
Affiliations
Soon will be listed here.
Abstract

Despite the widespread use of solution-processable hybrid organic-inorganic perovskites in photovoltaic and light-emitting applications, determination of their intrinsic charge transport parameters has been elusive due to the variability of film preparation and history-dependent device performance. Here we show that screening effects associated to ionic transport can be effectively eliminated by lowering the operating temperature of methylammonium lead iodide perovskite (CH3NH3PbI3) field-effect transistors. Field-effect carrier mobility is found to increase by almost two orders of magnitude below 200 K, consistent with phonon scattering-limited transport. Under balanced ambipolar carrier injection, gate-dependent electroluminescence is also observed from the transistor channel, with spectra revealing the tetragonal to orthorhombic phase transition. This demonstration of CH3NH3PbI3 light-emitting field-effect transistors provides intrinsic transport parameters to guide materials and solar cell optimization, and will drive the development of new electro-optic device concepts, such as gated light-emitting diodes and lasers operating at room temperature.

Citing Articles

A-Site Cation Chemistry in Halide Perovskites.

Hautzinger M, Mihalyi-Koch W, Jin S Chem Mater. 2024; 36(21):10408-10420.

PMID: 39554283 PMC: 11562073. DOI: 10.1021/acs.chemmater.4c02043.


Anomalous Polarons in Two-Dimensional Organometallic Perovskite Ferroelectric.

Yu J, Han Y, Yang Y, Zhang H, Liu Y, Xu J Adv Sci (Weinh). 2024; 11(43):e2406885.

PMID: 39312912 PMC: 11578327. DOI: 10.1002/advs.202406885.


Recent advances toward intraoctahedral phase change in metal halide perovskite nanomaterials.

Zhang X, Zhang S, Ren Z, Wang S, Liu H, Wang P iScience. 2024; 27(9):110794.

PMID: 39297174 PMC: 11408066. DOI: 10.1016/j.isci.2024.110794.


Obtaining giant Rashba-Dresselhaus spin splitting in two-dimensional chiral metal-organic frameworks.

Liu S, Xu K, Li X, Li Q, Yang J Chem Sci. 2024; 15(18):6916-6923.

PMID: 38725518 PMC: 11077538. DOI: 10.1039/d3sc06636c.


Progress and Application of Halide Perovskite Materials for Solar Cells and Light Emitting Devices.

Cheng M, Jiang J, Yan C, Lin Y, Mortazavi M, Kaul A Nanomaterials (Basel). 2024; 14(5).

PMID: 38470722 PMC: 10933891. DOI: 10.3390/nano14050391.


References
1.
Noh J, Im S, Heo J, Mandal T, Seok S . Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013; 13(4):1764-9. DOI: 10.1021/nl400349b. View

2.
DInnocenzo V, Srimath Kandada A, De Bastiani M, Gandini M, Petrozza A . Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J Am Chem Soc. 2014; 136(51):17730-3. DOI: 10.1021/ja511198f. View

3.
Jeon N, Noh J, Kim Y, Yang W, Ryu S, Seok S . Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat Mater. 2014; 13(9):897-903. DOI: 10.1038/nmat4014. View

4.
Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M . Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013; 499(7458):316-9. DOI: 10.1038/nature12340. View

5.
Wu K, Bera A, Ma C, Du Y, Yang Y, Li L . Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys. 2014; 16(41):22476-81. DOI: 10.1039/c4cp03573a. View