» Articles » PMID: 26092785

Cell Biology of Zymoseptoria Tritici: Pathogen Cell Organization and Wheat Infection

Overview
Date 2015 Jun 21
PMID 26092785
Citations 50
Authors
Affiliations
Soon will be listed here.
Abstract

Cell biological research in the wheat pathogen Zymoseptoria tritici (formerly Mycosphaerella graminicola) has led to a good understanding of the histology of the infection process. Expression profiling and bioinformatic approaches, combined with molecular studies on signaling pathways, effectors and potential necrosis factors provides first insight into the complex interplay between the host and the pathogen. Cell biological studies will help to further our understanding of the infection strategy of the fungus. The cellular organization and intracellular dynamics of the fungus itself is largely unexplored. Insight into essential cellular processes within the pathogen will expand our knowledge of the basic biology of Z. tritici, thereby providing putative new anti-fungal targets.

Citing Articles

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

Kroll E, Bayon C, Rudd J, Armer V, Magaji-Umashankar A, Ames R PLoS Pathog. 2025; 21(1):e1012769.

PMID: 39787257 PMC: 11717356. DOI: 10.1371/journal.ppat.1012769.


Long-term survival of asexual Zymoseptoria tritici spores in the environment.

Kay W, ONeill P, Gurr S, Fones H BMC Biol. 2024; 22(1):265.

PMID: 39563388 PMC: 11575008. DOI: 10.1186/s12915-024-02060-3.


DMI fungicide resistance in Zymoseptoria tritici is unlinked to geographical origin and genetic background: a case study in Europe.

Oreiro E, Samils B, Kildea S, Heick T, Hellin P, Legreve A Pest Manag Sci. 2024; 81(2):1103-1112.

PMID: 39503283 PMC: 11716363. DOI: 10.1002/ps.8514.


A -like environmental isolate strongly inhibits the plant fungal pathogen .

Song T, Gupta S, Sorokin Y, Frenkel O, Cytryn E, Friedman J Appl Environ Microbiol. 2024; 90(5):e0222223.

PMID: 38624199 PMC: 11107150. DOI: 10.1128/aem.02222-23.


The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus Zymoseptoria tritici.

Qutb A, Cambon F, McDonald M, Saintenac C, Kettles G BMC Plant Biol. 2024; 24(1):248.

PMID: 38580955 PMC: 10996218. DOI: 10.1186/s12870-024-04930-y.


References
1.
Kema G, Verstappen E, Todorova M, Waalwijk C . Successful crosses and molecular tetrad and progeny analyses demonstrate heterothallism in Mycosphaerella graminicola. Curr Genet. 1996; 30(3):251-8. DOI: 10.1007/s002940050129. View

2.
Wittenberg A, van der Lee T, Ben MBarek S, Ware S, Goodwin S, Kilian A . Meiosis drives extraordinary genome plasticity in the haploid fungal plant pathogen Mycosphaerella graminicola. PLoS One. 2009; 4(6):e5863. PMC: 2689623. DOI: 10.1371/journal.pone.0005863. View

3.
Deising H, Werner S, Wernitz M . The role of fungal appressoria in plant infection. Microbes Infect. 2000; 2(13):1631-41. DOI: 10.1016/s1286-4579(00)01319-8. View

4.
Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack K . Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol. 2011; 156(2):756-69. PMC: 3177273. DOI: 10.1104/pp.111.176347. View

5.
Stukenbrock E, McDonald B . The origins of plant pathogens in agro-ecosystems. Annu Rev Phytopathol. 2008; 46:75-100. DOI: 10.1146/annurev.phyto.010708.154114. View