» Articles » PMID: 26085583

Correlation Between Hox Code and Vertebral Morphology in Archosaurs

Overview
Journal Proc Biol Sci
Specialty Biology
Date 2015 Jun 19
PMID 26085583
Citations 22
Authors
Affiliations
Soon will be listed here.
Abstract

The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.

Citing Articles

Developmentally cascading structures do not lose evolutionary potential, but compound developmental instability in rat molars.

Vitek N, Saks E, Dong A, Burroughs R, Ward D, Pomeroy E bioRxiv. 2025; .

PMID: 39868330 PMC: 11761367. DOI: 10.1101/2025.01.13.632740.


Heterochrony and Oophagy Underlie the Evolution of Giant Filter-Feeding Lamniform Sharks.

Gayford J, Irschick D, Chin A, Rummer J Evol Dev. 2024; 27(1):e12496.

PMID: 39614804 PMC: 11608013. DOI: 10.1111/ede.12496.


Homeotic and nonhomeotic patterns in the tetrapod vertebral formula.

Cerbus R, Hiratani I, Kawaguchi K Proc Natl Acad Sci U S A. 2024; 121(47):e2411421121.

PMID: 39527744 PMC: 11588047. DOI: 10.1073/pnas.2411421121.


Extreme neck elongation evolved despite strong developmental constraints in bizarre Triassic reptiles-implications for neck modularity in archosaurs.

Rytel A, Bohmer C, Spiekman S, Talanda M R Soc Open Sci. 2024; 11(5):240233.

PMID: 39076823 PMC: 11285776. DOI: 10.1098/rsos.240233.


The neck as a keystone structure in avian macroevolution and mosaicism.

Marek R, Felice R BMC Biol. 2023; 21(1):216.

PMID: 37833771 PMC: 10576348. DOI: 10.1186/s12915-023-01715-x.


References
1.
Saga Y, Takeda H . The making of the somite: molecular events in vertebrate segmentation. Nat Rev Genet. 2001; 2(11):835-45. DOI: 10.1038/35098552. View

2.
Pourquie O . The segmentation clock: converting embryonic time into spatial pattern. Science. 2003; 301(5631):328-30. DOI: 10.1126/science.1085887. View

3.
Woltering J, Vonk F, Muller H, Bardine N, Tuduce I, de Bakker M . Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev Biol. 2009; 332(1):82-9. DOI: 10.1016/j.ydbio.2009.04.031. View

4.
Gomez C, Ozbudak E, Wunderlich J, Baumann D, Lewis J, Pourquie O . Control of segment number in vertebrate embryos. Nature. 2008; 454(7202):335-9. DOI: 10.1038/nature07020. View

5.
Muller J, Scheyer T, Head J, Barrett P, Werneburg I, Ericson P . Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proc Natl Acad Sci U S A. 2010; 107(5):2118-23. PMC: 2836685. DOI: 10.1073/pnas.0912622107. View