» Articles » PMID: 26083370

Self-Assembly of Temperature-Responsive Protein-Polymer Bioconjugates

Overview
Journal Bioconjug Chem
Specialty Biochemistry
Date 2015 Jun 18
PMID 26083370
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

We report a simple temperature-responsive bioconjugate system comprising superfolder green fluorescent protein (sfGFP) decorated with poly[(oligo ethylene glycol) methyl ether methacrylate] (PEGMA) polymers. We used amber suppression to site-specifically incorporate the non-canonical azide-functional amino acid p-azidophenylalanine (pAzF) into sfGFP at different positions. The azide moiety on modified sfGFP was then coupled using copper-catalyzed "click" chemistry with the alkyne terminus of a PEGMA synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. The protein in the resulting bioconjugate was found to remain functionally active (i.e., fluorescent) after conjugation. Turbidity measurements revealed that the point of attachment of the polymer onto the protein scaffold has an impact on the thermoresponsive behavior of the resultant bioconjugate. Furthermore, small-angle X-ray scattering analysis showed the wrapping of the polymer around the protein in a temperature-dependent fashion. Our work demonstrates that standard genetic manipulation combined with an expanded genetic code provides an easy way to construct functional hybrid biomaterials where the location of the conjugation site on the protein plays an important role in determining material properties. We anticipate that our approach could be generalized for the synthesis of complex functional materials with precisely defined domain orientation, connectivity, and composition.

Citing Articles

Environmental and Wastewater Treatment Applications of Stimulus-Responsive Hydrogels.

Visan A, Negut I Gels. 2025; 11(1).

PMID: 39852043 PMC: 11765053. DOI: 10.3390/gels11010072.


Artificial Zymogen Based on Protein-Polymer Hybrids.

Murata H, Kapil K, Kaupbayeva B, Russell A, Dordick J, Matyjaszewski K Biomacromolecules. 2024; 25(11):7433-7445.

PMID: 39422524 PMC: 11558679. DOI: 10.1021/acs.biomac.4c01079.


Dealing with the complexity of conjugated and self-assembled polymer-nanostructures using field-flow fractionation.

Muza U, Boye S, Lederer A Anal Sci Adv. 2024; 2(3-4):95-108.

PMID: 38716446 PMC: 10989546. DOI: 10.1002/ansa.202100008.


Supramolecular Assembly and Thermogelation Strategies Using Peptide-Polymer Conjugates.

Pascouau C, Schweitzer M, Besenius P Biomacromolecules. 2024; 25(5):2659-2678.

PMID: 38663862 PMC: 11095398. DOI: 10.1021/acs.biomac.4c00031.


Peptide-Protein Coassemblies into Hierarchical and Bioactive Tubular Membranes.

Majkowska A, Inostroza-Brito K, Gonzalez M, Redondo-Gomez C, Rice A, Rodriguez-Cabello J Biomacromolecules. 2023; 24(10):4419-4429.

PMID: 36696687 PMC: 10565817. DOI: 10.1021/acs.biomac.2c01095.


References
1.
Velonia K, Rowan A, Nolte R . Lipase polystyrene giant amphiphiles. J Am Chem Soc. 2002; 124(16):4224-5. DOI: 10.1021/ja017809b. View

2.
Roberts M, Bentley M, Harris J . Chemistry for peptide and protein PEGylation. Adv Drug Deliv Rev. 2002; 54(4):459-76. DOI: 10.1016/s0169-409x(02)00022-4. View

3.
Rostovtsev V, Green L, Fokin V, Sharpless K . A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew Chem Int Ed Engl. 2002; 41(14):2596-9. DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4. View

4.
Krishna O, Kiick K . Protein- and peptide-modified synthetic polymeric biomaterials. Biopolymers. 2010; 94(1):32-48. PMC: 4437713. DOI: 10.1002/bip.21333. View

5.
Stayton P, Shimoboji T, Long C, Chilkoti A, Chen G, Harris J . Control of protein-ligand recognition using a stimuli-responsive polymer. Nature. 1995; 378(6556):472-4. DOI: 10.1038/378472a0. View